

JUNE 29, 2023 | DR. LAURA LLERAS FORERO AND INES KRISTINA HARTMANN

Good Cell Culture Practice

How to Improve the Reproducibility of Your Experiments

Please note that this webinar will be recorded.

By continuing to participate, you are providing a worldwide, irrevocable, royalty-free license and consent to Evident to record and use your likeliness, including your voice, in addition to any comments or questions submitted by you, within the recording of this segment of Ask the Experts, where such recording will be displayed on Evident's websites and accessed by the public.

Your Experts Today

Dr. Laura Lleras Forero

Product Marketing Manager Evident

Ines Hartmann

Application Specialist, Cell Handling Eppendorf SE

Agenda

Introduction

- Cell Passage, Confluency, and Cell Count
- Cell Seeding
- Cell Incubation
- Conclusions and F
 - **Conclusions and Recommendations**

What Is Reproducibility?

- 1. The ability to replicate the results from a published study using the same methods and materials.
- 2. Are the methodology and results presented in sufficient detail to enable replication?

Reproducibility in Science

Is there a reproducibility crisis?*

Have you ever established procedures for reproducibility?*

*1,576 researchers surveyed

Cultured Cells as Model Systems

Benefits:

- > Cells retain many functions and properties of their parental tissue
- > Cells serve as a model system to test new therapeutic approaches
- > Renewable resource of cell material

Risks:

- > Contamination with microorganisms
- > Cross-contamination of different cell lines
- > Genetic drift during cultivation
- > Response to different cultivation conditions

"Cell culture sometimes feels like a black art, with everyone having their own preferred method"

- Dr. Delcassian, MIT (Mass., USA). Technology Networks Cell Science 2018

Cell Passage, Confluency, and Cell Count

02

The Human Eye Is Not Quantitative

EvidentScientific.com

Irregular Cell Culture Process

Optimal Timepoint for Passaging

Optimizing cell growth

- > Plot a cell growth curve
- > Don't let the cultures overgrow
- > Check cell viability
- > Do not use cultures with <80% viability

^a Centre for Cell Engineering Josenh Black Building University of Glasgow G12.800 Glasgow UK

EvidentScientific.com

Cell Passage Influences Cell Culture Reproducibility

Cell Morphology Changes with Different Passages

Circularity (a.u.)

Osaki, T et al. Sci Rep 7, 1897 (2017).

Cell Morphology Changes with Different Passages

Li et al. Cell Tissue Res (2007).

EvidentScientific.com

Avoid Prolonged Passaging

- > Use high-quality cells as a starting point
- > Establish a reference cell stock
- > Determine the safe passage number by establishing baselines
 - > Expression/presence of proteins of interest
 - > Proliferation rates
- > Monitor morphology and document culture maintenance
- > Stop active cultivation of cells that are not used

Cell Count Is Essential for Experimental Reproducibility

Niepel et al. Cell Systems (2019)

Cell Count Affects the End Experimental Result

Niepel et al. Cell Systems (2019)

Introduction

Cell Culture Workflow

Routine Maintenance

Eppendorf SE | Good Cell Culture Practice: How to Improve the Reproducibility of Your Experiments | June 2023

Prepare Your Workspace

If you handle different cell lines:

- > Work with one cell line at a time
- > Disinfect the workspace in between
- > Dedicate aliquots/media bottles for each cell line

eppendorf

eppendorf Know Your Cells' Growth Behavior and Morphology

Check for Contamination

Bacteria

Fungus

Yeast

Cell cultures should be tested for mycoplasma contamination regularly.

Seeding Cells

Filling a plate is time consuming.

- > Cell sedimentation in the tube is quite fast
- The longer the seeding process, the higher the decrease in cell number
- > Make sure to resuspend in between

The formation of air bubbles.

- > Culture medium tends to foam
- > Air bubbles can hinder cell attachment
- > Avoid harsh and fast pipetting

Influence of Pipetting Systems

Air-cushion

- > Variable influencing factors
- Optimal for aqueous solutions
- > Prone to contamination by aerosols (-> filter tips)

Tip with integrated piston No air above the liquid

Positive displacement

- > Unaffected by physical properties of liquid
- > Suitable for "problematic" liquids
- > Contamination free

eppendorf

Pipetting Different Liquids

Common dissolvents can be problematic

- > Ethanol (volatile liquid)
- > DMSO (viscous liquid)

Air-cushion vs. positive displacement

Good Pipetting Practice (Air-Cushion)

- Choose the smallest pipette (for 100 μL, a 10–100 μL is prefered rather than a 100–1000 μL)
- > Hold the pipette vertical when aspirating liquid
- > Only slightly immerse the tip in the liquid
- > Keep a constant immersion depth
- > While dispensing, keep a constant angle of 45°

Liquid pipetted with a varying angle during dispensing

Mixing and Pipetting Technique

Pipetting can affect assay results.

Source: InCelligence

How to Achieve Homogeneous Cell Adhesion

Density-Dependent Cell Behavior

Low density

Medium density

High density

eppendorf

eppendorf

Constant Documentation

Clear and traceable cell identification

Culture conditions and procedures

Reference images

Everyday culture practice

◆ Images 23-06-2023	+ ₽ G	Sign in with Google	+ box	+ ଦ	+ 😐	+ Add Image	×	Ξ
low density	sity					•		
HeLa seeding density								
Created: Last Updated:	23-06-20 23-06-20	023 023		Wilke, Julia V	Julia Vilke			

Splitting Log 23-06-2023 ✓ X Ξ											x =		
Date	Person	Passage Nr.	cells/mL	Viability	Split Ratio	Comments						1	
16.04.05	Julia	16	-			Cells seeding intitiated							
16.04.06	Julia	17				Medium changed							
16.04.07	Gabriela	20	1 x 10^6	45%	1/3								
16.04.08	Julia	16	3 x 10^4	43%	1/5								
16.04.09	Julia	18	-					÷				-	
-					1		1 1	Sourc	e: http	s://wv	vw.elat	next.	.com/

Increase reproducibility by minimizing user-dependent variations

04

Introduction

Cell Culture Workflow

Eppendorf SE | Good Cell Culture Practice: How to Improve the Reproducibility of Your Experiments | June 2023

Provide Stable Incubation Conditions

Reduce traffic in and out:

- > Incubators with segmented inner doors
- > Recovery of temperature and CO₂ (O₂) level
- > No set point overshoot
- > Separate incubators for maintenance and experiment, etc.

Avoid Vibrations

Incubator door openings

Closed door

Frequent door openings

Moving culture vessels after seeding

Not moving

eppendorf

Manual moving

Other vibration sources in the lab:

- > Centrifuges, freezers, air conditioners
- > CO_2 incubators with a fan

Minimize Disturbances—Stay Organized

Organize to reduce the number and duration of incubator door openings.

- > Optimal incubator content organization depends on lab routines
- > Segmented inner doors decrease recovery times

Avoid Contamination Risks

Clean and decontaminate on a regular basis.

- > Use incubators with a seamless chamber
- > Disassemble and clean inner parts
- > Clean/disinfect inner walls
- > Run high disinfection routine (optional)

Eppendorf CellXPert

Monitor Incubation Parameters

Reproducible culture conditions

- > Check for door openings during incubation
- > Download performance data for documentation

Conclusions and Recommendations

- 1. To increase reproducibility in your cell count and confluency measurements, include an impartial measurement method not based on personal estimation
- 2. Track population doubling times and profile growth curve characteristics periodically
- 3. When receiving a new batch of cells, test for mycoplasma, authenticate the cells, and make a frozen aliquot
- 4. Establish quality control protocols in your laboratory
- 5. Properly describe everything in the methodology and perform statistical analysis

Conclusions and Recommendations

Reproducible experiments and culture conditions:

- > For seeding cells, choose the proper pipette and pipetting technique
- > For experiments, seed the cells from a pre-diluted master mix and do not let the cells sediment
- Apply continuous proper documentation that can be shared (e.g., with an electronic lab notebook)
- > Avoid vibrations and minimize disturbances in your incubation environment (fan-less design, organized incubators, split doors)
- > Check the data log on your device to track device performance and download it if needed

Thank you for your attention

The CM30 Incubation Monitoring Systems

Product solutions

CellXpert[®] CO₂ Incubator Family

More than a safe home for your cells

- ✓ Easy to clean, fast atmosphere recovery, no fan, 180 °C (365 °F) disinfection, and more
- ✓ Saves up to 8,300€/\$9,000 over five years
- ✓ Up to 25% more usable space

Eppendorf.com/co2-incubators

Dr. Laura Lleras Forero

Product Marketing Manager Evident

Ines Hartmann

Application Specialist, Cell Handling Eppendorf SE

E VIDENT SEEING IS SOLVING