Not Available in Your Country
Application Notes

TIRF Imaging of Changes in Membrane Morphology and Molecular Dynamics


Total Internal Reflection Fluorescence (TIRF) Imaging of Changes in Membrane Morphology and Molecular Dynamics under the Cell Membrane with Olympus’ Z-drift Compensation System

Introduction

One important issue in current cell biology research is to understand the mechanism of physiological phenomena associated with the intercellular communication between adjacent cells. A promising step toward this goal is live cell microscopy that enables researchers to monitor changes in cell membrane morphology and the dynamics of localized molecules at the intercellular adhesion site. Figure 1 illustrates how high-precision TIRF imaging is enabling new types of advanced cellular research. The images, captured using an Olympus motorized inverted microscope IX series, show changes in the membrane morphology and molecular dynamics under the cell membrane. The Olympus Z-drift compensator maintained a sharp focus on the cells over a long period of time enabling these images to be captured in such high quality. This process demonstrates the importance of TIRF and the Olympus Z-drift compensator to advanced live cell imaging.

Time-lapse images of a Cos-1 cell
 Figure 1. Time-lapse images of a Cos-1 cell co-expressing GFP-17 and Lifeact-mCherry.

Examination of whether the recruitment of FBP17 to the plasma membrane is dependent on transient reduction of membrane tension caused by myosin based contraction force. FBP17 acutely disappeared from the cell edge after treatment with the myosin inhibitor blebbistatin (175 sec). This ef fect can be rescued by subsequent reduction of membrane tension induced by hypertonic buffer (260 sec), indicating that the FBP17 senses the membrane tension to assemble at the plasma membrane.

Loading the player…

the single molecule level under TIRF microscopy

 

Time-lapse movie of a Cos-1 cell co-expressing GFP-17 and Lifeact-mCherry.

Imaging System;
Microscope: Research Inverted Microscope IX81
Objective: PlanApo 100XOTIRFM(100X, N.A.1.45)
CCD camera: Cascade II cooled CCD camera (Photometrics)
Z-drift Compensation System: IX-ZDC

Image data courtesy of;
Kazuya Tsujita, Ph.D., Toshiki Itoh, Ph.D.
Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University

Reference;
Nat Cell Biol. 2015 Jun;17(6):749-58. doi: 10.1038/ncb3162.
J Cell Sci. 2013 May 15;126(Pt 10):2267-78. doi: 10.1242/jcs.12251

Loading the player…

Polarisation of FBP17 is induced by PM tension increase1

 

Polarisation of FBP17 is induced by PM tension increase.
COS-1cell co-expressing GFP-FBP17 and Lifeact-mCherry was observed by time-lapse microscopy upon hypotonic buffer. The movie was taken at 1 frame per 5 seconds and played at 15 fps.

Loading the player…

Polarisation of FBP17 is induced by PM tension increase2

 

Polarisation of FBP17 is disrupted by PM tension decrease.
COS-1 cell co-expressing GFP-FBP17and Lifeact-mCherry was observed by time-lapse microscopy upon addition of hypertonic buffer. The movie was taken at 1 frame per 5 seconds and played at 15 fps.

Loading the player…

Polarisation of FBP17 is induced by PtdIns(4,5)P2 liberation

 

Polarisation of FBP17 is induced by PtdIns(4,5)P2 liberation.
COS-1 cell co-expressing GFP-FBP17, CFP-FKBP-PLC δ1 PH domain, and mRFP-FRB-MoA was observed by time-lapse microscopy upon addition of rapamycin. The movie was taken at 1 frame per 5 seconds and played at 15 fps.

Loading the player…

Polarisation of FBP17 is disrupted by PtdIns(4,5)P2 depletion

 

Polarisation of FBP17 is disrupted by PtdIns(4,5)P2 depletion.
COS-1 cell co-expressing GFP-FBP17, CFP-PM-anchored FRB domain, and mRFP-FKBP-5-phosphatase domain was observed by time-lapse microscopy upon addition of rapamycin. The movie was taken at 1 frame per 5 seconds and played at 15 fps.

Loading the player…

Dynamics of FBP17 at the leading edge

 

Dynamics of FBP17 at the leading edge. COS-1 cell co-expressing GFP-FBP17and Lifeact-mCherry was observed by time-lapse microscopy. The movie was taken at 1 frame per 5 seconds and played at 15 fps.

Loading the player…

Acute disruption of FBP17 polarity by N-WASP inhibition

 

Acute disruption of FBP17 polarity by N-WASP inhibition. COS-1 cell co-expressing GFP-FBP17 and Lifeact-mCherry was observed by time-lapse microscopy upon addition of wiskostatin. The movie was taken at 1 frame per 10 seconds and played at 15 fps.

Loading the player…

Acute disruption of FBP17 polarity by Arp2/3 complex inhibition

 

Acute disruption of FBP17 polarity by Arp2/3 complex inhibition.
COS-1 cell co-expressing GFP-FBP17 and Lifeact-mCherry was observed by time-lapse microscopy upon addition of CK-666. The movie was taken at 1 frame per 10 seconds and played at 15 fps.

Conclusion

Olympus’ live cell imaging solutions and Z-drift compensator facilitate long-term imaging studies of cellular processes. The Z-drift compensator utilizes low phototoxicity infrared (IR) light to detect the correct focus position, to make automatic focal adjustments, and to maintain precise focusing over time by avoiding focus drift due to factors such as temperature changes. The type of experiment described above cannot be accomplished using conventional microscopy because the images captured over time would be out of focus because of focus drift. The Z-drift compensator enables images to be captured without loss of focus. This facilitates chronological, high-precision tracking of dynamic changes of FBP17 and the Lifeact actin marker under the cell membrane.

Products related to this application

TIRF Imaging Microscope System

IXplore TIRF

  • Excellent simultaneous multi-color TIRF for investigation of membrane dynamics and single molecule detection 
  • Exact colocalization of up to four markers thanks to individual penetration depth control
  • Take advantage of Olympus’ remarkable TIRF objective with the world's highest NA of 1.7* (*As of July 25, 2017. According to Olympus research)
  • Intuitive set-up of complex experiments with Graphical Experiment Manager (GEM)
High Resolution Objectives for Super Resolution/TIRF

TIRF/HR

  • High NA to create an evanescent wave field for high contrast TIRF images or super resolution
  • HR series are the world first* Plan Apochromat objectives with NA1.5 which achieve wide flatness

* As of November 2018. According to Olympus research.

Z drift compensator

IX3-ZDC2

  • Always in Focus
  • Designed for Ease-of-use
  • Dedicated to Live Cell Imaging
  • High-Precision, Multi-Area Imaging with cellSens Software

was successfully added to your bookmarks

View BookmarksClose

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Sorry, this page is not
available in your country.

This site uses cookies to enhance performance, analyze traffic, and for ads measurement purposes. If you do not change your web settings, cookies will continue to be used on this website. To learn more about how we use cookies on this website, and how you can restrict our use of cookies, please review our Cookie Policy.

OK