Evident LogoOlympus Logo
Nota de aplicación

Application of the Z-Drift Compensation System IX-ZDC to multidimensional cell-based assay at the single cell level


Multidimensional cell-based assay at the single cell level

A cell-based assay system that facilitates efficient multi-sample data collection enables researchers to observe dose-dependent physiological activity at the single-cell level to study physiological reactions and cell response. In this type of assay, cells are typically cultured in a multiwell plate. Inverted microscopes are then used to observe physiological reactions of how cells respond when different doses of drugs are added to an individual well.

Inverted microscopes with z-drift compensation systems can perform fully automated, continuous observation  over several days, which is important for monitoring cell growth or testing the toxicity of drugs. The ability to image multidimensional drug dose-dependent cell growth and intracellular physiological activity is important for advancing cell-based assays.

Using the IX-ZDC z-drift compensator to help analyze resistance of cancer cells to MEK inhibitors using FRET biosensor

1)Visualization of extracellular signal-regulated kinases (ERKs) using Förster resonance energy transfer (FRET) biosensor

The Ras-Raf-MEK-ERK signaling pathway is well known for its association with cancer development and is a target for molecular chemotherapy drugs. However, the pathway’s association with anticancer drug resistance is unclear. In order to better understand the role of the Ras-Raf-MEK-ERK signaling pathway in anticancer drug resistance, researchers at the Graduate School of Medicine, Kyoto University, Japan analyzed resistance to MEK inhibitors in multiple cancer cell lines using a FRET biosensor that enables researchers to visualize the activity of the ERK protein kinase, which is a component of the Ras-Raf-MEK-ERK signaling pathway.

Fig 1. Structure of the FRET biosensor for visualization of ERK or S6K activity

Fig 1. Structure of the FRET biosensor for visualization of ERK or S6K activity
Phosphorylation of ERK or S6K substrate in the FRET biosensor molecule causes it to intra-molecularly bind to the phosphopeptide-binding domain (WW or FHA1) resulting in an increase in the FRET efficiency between the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP).

2)Using the IX-ZDC z-drift compensator to construct a multidimensional cell-based assay system

HT-29 cells (with BRAF V600E mutation) expressing FRET (Fig. 1) were cultured in a 96-well glass plate. After adding different doses of an MEK1/2 inhibitor (AZD6244) to individual wells, a fully-motorized, inverted Olympus IX Series microscope was used to continually observe the change in intracellular ERK activity and cell growth in each well for 3 days. The IX-ZDC z-drift compensator automatically adjusted the focus each time one of the wells was imaged, enabling researchers to capture images that were always in focus, even during long-term observation.

Fig 2. Using the IX-ZDC Z-drift compensator with a multidimensional cell-based assay system
Fig 2. Using the IX-ZDC Z-drift compensator with a multidimensional cell-based assay system
Bright spots in the images correspond to the nuclei of cells expressing the FRET biosensor for detecting ERK activity.
The warmer and cooler colors indicate higher and lower levels of ERK activity, respectively.

3)Quantitative analysis of MEK1/2 inhibitor dose-dependent ERK activity and cell growth rate

In order to analyze the dose-dependent response of HT-29 cells (with BRAF V600E mutation) to the MEK1/2 inhibitor (AZD6244) from the data obtained by the multidimensional cell-based assay described above (Fig. 2), the researchers generated a graph (Fig. 3) by plotting the MEK1/2 inhibitor (AZD6244) concentration on the x-axis, growth rate (/day) on the left y-axis, and ERK activity on the right y-axis (using a data set generated up to one day after the addition of the MEK1/2 inhibitor). To analyze the relationship between the MEK1/2 inhibitor dose-dependent ERK activity and the growth rate, they generated a second graph (Fig. 4) by plotting the ERK activity on the x-axis and growth rate on the y-axis. These graphs revealed that HT-29 cells exhibited almost identical IC50 values for both ERK activity and cell growth rate and that there was a linear correlation between ERK activity and cell growth rate.
 

Fig 3. Dose-dependent response of ERK activity and cell growth rate on the MEK1/2 inhibitor (AZD6244) in HT-29 cellsFig 4. Relationship between the MEK1/2 inhibitor (AZD6244) dose-dependent ERK activity and cell growth rate in HT-29 cells

Fig 3. Dose-dependent response of ERK activity and cell growth rate on the MEK1/2 inhibitor (AZD6244) in HT-29 cells

Fig 4. Relationship between the MEK1/2 inhibitor (AZD6244) dose-dependent ERK activity and cell growth rate in HT-29 cells

4)MEK1/2 inhibitor dose-dependent ERK activity and cell growth rate in multiple cancer cell lines

By repeating the same analysis in cancer cell lines other than HT-29 cells, researchers found that the IC50 values of the MEK1/2 for ERK activity were similar to each other in various cancer cell lines (~0.01 μM); and in MEK1/2 resistant cancer cell lines (KRas-mutant cell lines), the IC50 for the cell growth rate was more than 10 times higher than the IC50 for ERK activity, resulting in a nonlinear correlation between ERK activity and cell growth rate.

This study required large volumes of imaging data, and the efficient analysis of resistance to the MEK inhibitor in cancer cells would not have been possible without the IX-ZDC z-drift compensator for the inverted IX Series microscope.

Fig 5. Comparison of IC50 values of the MEK1/2 inhibitor (AZD6244) for ERK activity and cell growth rates in multiple cancer cell lines

Fig 5. Comparison of IC50 values of the MEK1/2 inhibitor (AZD6244) for ERK activity and cell growth rates in multiple cancer cell lines

Imaging conditions
Microscope: Motorized inverted IX Series microscope.
Z-drift compensation system: IX-ZDC
Objective: UPLSAPO20X, dry
Microplate: 96-well glass microplate

Conclusion
IX-ZDC z-drift compensator supports multidimensional cell-based assays

Olympus’ IX-ZDC z-drift compensator and the motorized, inverted IX Series microscope enable the material in individual wells within a microplate to be imaged clearly for experiments lasting multiple days. With the autofocus function, a 96-well plate can be completely imaged in about 2 minutes,* supporting a highly precise and rapid cell-based assay.

*For serial imaging of one spot in each well of a 96-well plate with a 30 ms exposure time.

Movie of UCPLFLN20XPH to multidimensional cell-based assay at the single cell level

This application note was prepared with the help of:
Dr. Naoki Komatsu, Assistant Professor, Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Japan and Dr. Kazuhiro Aoki, Designated Associate Professor, Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Japan.

For more details on the study in this application note, please see:
Komatsu, N., Y. Fujita, M. Matsuda, and K. Aoki. "mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells." Oncogene 34, no. 45 (2015): 5607–5616

Productos usados para esta aplicación

Microscopio confocal de disco giratorio con súper resolución

SpinSR10

  • Imágenes de células vivas con super resolución
  • Observación en profundidad
  • Un sistema flexible para ayudar a simplificar su investigación
El microscopio invertido modular completamente motorizado y automatizado

IX83

  • Exclusivo sistema de plataformas
  • Sistema completamente motorizado
  • Soluciones modulares
Sistema microscópico de superresolución

IXplore IX83 SpinSR

El sistema IXplore IX83 SpinSR es un microscopio confocal de superresolución optimizado para el procesamiento de imágenes 3D de células vivas. Al igual que el sistema IXplore Spin, este sistema presenta una unidad de disco giratorio para un procesamiento de imágenes 3D rápido que evita fototoxicidad y fotoblanqueo al mismo tiempo. Además, alcanza imágenes de superresolución de hasta 120 nm en XY, y permite alternar entre la microscopía de campo amplio, confocal y superresolución con tan sólo un clic de botón.

  • Procesamiento de superresolución para imágenes nítidas y claras de hasta 120 nm en XY, mediante la tecnología de Superresolución de Olympus (OSR).
  • Viabilidad celular prolongada en imágenes confocales a intervalos gracias a la reducción de la fototoxicidad y el fotoblanqueo
  • Uso de hasta dos cámaras al mismo tiempo para lograr un procesamiento de imágenes rápido, bicolor y de superresolución
  • Procesamiento de imágenes de superresolución llevado a cabo con los primeros objetivos de Plan Apochromat del mundo gracias a una apertura numérica (A. N.) de 1.5*.
* Hasta noviembre del 2018, según los estudios efectuados por Olympus.
Sistema microscópico para procesamiento TIRF

IXplore IX83 TIRF

Dedicado a experimentos que tratan la dinámica de membranas, la detección de moléculas individuales y la colocalización, el sistema microscópico IXplore TIRF facilita un procesamiento de imágenes multicolor simultáneo de fluorescencia de reflexión interna total (TIRF) hasta con cuatro colores y alta estabilidad. El sistema cellTIRF proporciona un control motorizado, estable e individual del ángulo del láser; esto favorece la penetración regular de onda evanescente en imágenes de alto contraste y bajo ruido. Nuestros objetivos TIRF ofrecen una óptima relación entre señal y ruido, una alta apertura numérica, y collares de corrección para distintos espesores y temperaturas de cubreobjetos de vidrio.

  • Colocalización exacta de hasta cuatro indicadores gracias al control de profundidad de penetración individual
  • Benefíciese de nuestro objetivo TIRF que ofrece la apertura numérica más alta del mundo: 1.7*
  • Configuración intuitiva de experimentos complejos con el Administrador Gráfico de Experimentos (GEM), el sistema cellFRAP y el controlador U-RTCE
* Hasta el 25 de julio de 2017, según los estudios efectuados por Olympus.
Sistema microscópico para imágenes de células vivas

IXplore Live

  • Utilice el controlador en tiempo real de Olympus para los datos relevantes a nivel fisiológico con una mínima alteración celular
  • Mantenga la viabilidad celular durante el procesamiento de imágenes con varias opciones de control ambiental
  • Mantenga el enfoque de forma precisa y fiable en experimentos a intervalos gracias al sistema de enfoque automático (compensación de deriva en Z) del hardware Olympus
  • Descubra la forma real de sus células gracias a los objetivos de inmersión de silicona de Olympus
Sistema microscópico automatizado

IXplore Pro

  • Observación multidimensional automática con una configuración sencilla de los experimentos
  • Mejore sus estadísticas con análisis de placas multipocillo
  • Adquiera imágenes panorámicas fluorescentes de grandes muestras, como las rodajas de tejido cerebral
  • Aumente la resolución y cree secciones ópticas con deconvolución
  • Create 3D optical sections and enhance resolution with TruSight
Sistema microscópico para imágenes confocales

IXplore Spin

El sistema IXplore Spin presenta una unidad confocal de disco giratorio para habilitar una rápida adquisición de imágenes 3D, un amplio campo de visual y una viabilidad celular prolongada en experimentos a intervalos. Los investigadores pueden usarlo para llevar a cabo un procesamiento de imágenes confocal 3D con alta resolución y contraste en profundidades aún mayores a fin de adquirir imágenes de muestras aún más gruesas. El disco giratorio también permite reducir el fotoblanqueo y la fototoxicidad de las muestras bajo excitación.

  • Controlador en tiempo real (U-RTCE) que permite optimizar la velocidad y precisión del dispositivo durante la adquisición automatizada
  • Sistema de compensación de deriva en Z TruFocus™ que mantiene el enfoque en cada fotograma
  • Procesamiento de imágenes preciso en 3D con una recuperación de luz mejorada mediante los objetivos X Line™
  • Actualización a una clase superior del sistema de superresolución IXplore SpinSR a medida que su investigación progresa
Objetivos semiapocromáticos para recipientes de cultivo

UCPLFLN/LUCPLFLN

Preparados para la observación de cultivos tisulares colocados en matraces o placas, estos objetivos semiapocromáticos universales otorgan una gran distancia de trabajo, así como una alta resolución y contraste. Facilitan imágenes planas y una alta transmisión hasta el área del infrarrojo cercano; además, son adecuados para observaciones de campo claro, contraste de interferencia diferencial (DIC) y fluorescencia.

  • Objetivos universales de larga distancia de trabajo con excelente contraste y resolución en observaciones de campo claro, contraste de interferencia diferencial y fluorescencia
  • Visualización de imágenes planas desde altos factores de transmisión hasta el área espectral del infrarrojo cercano
  • Diseño dedicado a observaciones de cultivos tisulares a través de matraces y placas
Compensador de deriva en Z

IX3-ZDC2

  • Siempre en foco
  • Diseñado para ofrecer facilidad de uso
  • Específico para la obtención de imágenes de células vivas
  • Captura de imágenes multi-área de alta precisión con el software cellSens

se ha añadido correctamente a sus marcadores

Ver marcadoresCerrar

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Sorry, this page is not
available in your country.

Lo sentimos, la página solicitada no se encuentra disponible en su país.