Evident LogoOlympus Logo

Selected Literature References

Section Overview:

A number of books and review articles covering important topics in near-field scanning optical microscopy have been published by leading researchers in the field. This section contains periodical location information about these books and articles, as well as providing a listing of selected original research reports from this cutting-edge field of research.

Books

  • Fabrication of Silicon Microprobes for Optical Near-Field Applications, Minh, P., Takahito, O., and Masayoshi, E., CRC Press, Boca Raton, Florida, 192 pages (2002).
  • Near-Field Optics and Surface Plasmon Polaritons, Kawata, S., (ed.) Springer, Osaka, Japan, 210 pages (2001).
  • Near-Field Nano-Optics: From Basic Principals to Nano-Fabrication and Nano-Photonics, Ohtsu, M. and Hori, H., Plenum Publishers, New York, 386 pages (1999).
  • Near-Field Optics: Principles and Applications, Zhu, X. and Ohtsu, M., (eds.) World Scientific Publishing, Singapore, 273 pages (1999).
  • Near-Field Nano/Atom Optics and Technology, Ohtsu, M., (ed.) Springer, Tokyo, Japan, 302 pages (1998).
  • Near Field Optics and Nanoscopy, Fillard, J., World Scientific Publishing, Singapore, 438 pages (1996).

Review Articles

  • In touch with atoms., Binnig, G. and Rohrer, H., Reviews of Modern Physics: 71, S324-S330 (1999).
  • Near-field scanning optical microscopy., Dunn, R., Chemical Reviews: 99, 2891-2927 (1999).
  • Near-field scanning optical microscopy in cell biology., Lewis, A., Radko, A., Ben-Ami, N., Palanker, D., and Lieberman, K., Trends in Cell Biology: 9, 70-72 (1999).
  • Design and imaging concepts in NSOM., Lewis, A., Lieberman, K., Ben-Ami, N., Fish, G., Khachatryan, E., Ben-Ami, U., and Shalom, S., Ultramicroscopy: 61, 215-220 (1995).
  • Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit., Betzig, E. and Trautman, J., Science: 257, 189-195 (1992).
  • Scanning near-field optical microscopy (SNOM)., Pohl, D., Advances in Optical and Electron Microscopy: 12, 243-312 (1991).
  • A suggested method for extending microscopic resolution into the ultra-microscopic region., Synge, E., Philosophical Magazine: 6, 356-362 (1928).

Original Research Reports

  • Near-field optical microscopy based on microfabricated probes., Eckert, R., Freyland, J., Gersen, H., Heinzelmann, H., Schurmann, G., Noell, W., Staufer, U., and De Rooij, N., Journal of Microscopy: 202, 7-11 (2001).
  • An apertureless near-field microscope for fluorescence imaging., Yang, G. and Quake, S., Applied Physics Letters: 76, 378-380 (2000).
  • Improved probes for scanning near-field optical microscopy., Suh, Y. and Zenobi, R., Advanced Materials: 12, 1139-1142 (2000).
  • Operation characteristics of piezoelectric quartz tuning forks in high magnetic fields at liquid helium temperatures., Rychen, J., Ihn, P., Herrmann, A., Ensslin, K., Hug, H., von Schendel, P., and Guntherodt, H., Review of Scientific Instruments: 71, 1695-1697 (2000).
  • A low-temperature dynamic mode scanning force microscope operating in high magnetic fields., Rychen, J., Ihn, T., Studerus, P., Herrmann, A., and Ensslin, K., Review of Scientific Instruments: 70, 2765 (1999).
  • A near-field scanning optical microscope with a high Q-factor piezoelectric sensing element., Davydov, D., Konstantin, T., Shelimov, B., and Moskovits, M., Applied Physics Letters: 75, 1796 (1999).
  • Atomic steps with tuning-fork-based noncontact atomic force microscopy., Rensen, W., van Hulst, N., Ruiter, A., and West, P., Applied Physics Letters: 75, 1640-1642 (1999).
  • Bandwidth enhancement of a shear-force-controlled distance regulation in near-field microscopy., Lippitz, M., Schüttler, H., Born, M., and Ruhle, W., Journal of Applied Physics: 86, 100-106 (1999).
  • Dynamic force distance control suited to various probes for scanning near-field optical microscopy., Naber, A., Maas, K., and Fischer, U. Review of Scientific Instruments: 70, 3955-3961 (1999).
  • Experiments on the depolarization near-field scanning optical microscope., Adelmann, C., Hetzler, J., Scheiber, G., Schimmel, T., Wegener, M., Weber, H., and Lohneysen, H., Applied Physics Letters: 74, 179-181 (1999).
  • Femtosecond pump-probe near-field optical microscopy., Nechay, B., Siegner, U., Achermann, M., Bielefeldt, H., and Keller, U., Review of Scientific Instruments: 70, 2758 (1999).
  • High-quality near-field optical probes by tube etching., Stockle, C., Deckert, V., Zenobi, R., Sick, B., and Wild, U., Applied Physics Letters: 75, 160 (1999).
  • Nanostructured probes for scanning near-field optical microscopy., Drews, D., Ehrfeld, W., Lacher, M., Mayr, K., Noell, W., Schmitt, S., and Abraham, M., Nanotechnology: 10, 61-64 (1999).
  • Near-field optical fiber probe optimized for illumination-collection hybrid mode operation., Saiki, T. and Matsuda, K., Applied Physics Letters: 74, 2773 (1999).
  • Near-field photolithography with a solid immersion lens., Ghislain, L., Elings, V., Crozier, K., Manalis, S., Minne, S., Wilder, K., Kino, G., and Quate, C., Applied Physics Letters: 74, 501-503 (1999).
  • Near-field scanning optical microscopy in cell biology., Lewis, A., Radko, A., Ben-Ami, N., Palanker, D., and Lieberman, K., Trends in Cell Biology: 9, 70-72 (1999).
  • Near-field scanning optical microscopy., Shiku, H. and Robert, C., Analytical Chemistry: 71, (1999).
  • Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy., Minh, P., Ono, T., and Esashi, M., Applied Physics Letters: 75, 4076-4078 (1999).
  • Novel scanning near-field optical microscope, SNOM/scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips., Wolf, J., Hillner, P., Bilewicz, R., Isch, P. and Rabe, J., Review of Scientific Instruments: 70, (1999).
  • Picosecond multiphoton scanning near-field optical microscopy., Jenei, A., Kirsch, A., Subramaniam, V., Arndt-Jovin, D., and Jovin, T., Biophysical Journal: 76, 1092-1100 (1999).
  • Scanning near-field fluorescence resonance energy transfer microscopy., Vickery, S. and Dunn, R., Biophysical Journal: 76, 1812-1818 (1999).
  • Single molecules as probes of lipid membrane microenvironments., Talley, C. and Dunn, R., Journal of Physical Chemistry B: 103, 10214-10220 (1999).
  • Computer simulations on near-field scanning optical microscopy: Can subwavelength resolution be obtained using uncoated optical fiber probes?, Freymann, G. Schimmel, T., Wegener, M., Hanewinkel, B., Knorr, A., and Koch, S., Applied Physics Letters: 73, 1170-1172 (1998).
  • Design and optimization of a near-field scanning optical microscope for imaging biological samples in liquid., Gheber, J. and Edidin, M., Applied Optics: 37, 3574-3581 (1998).
  • Domains in cell plasma membranes investigated by near-field scanning optical microscopy., Hwang, J., Gheber, L., Margolis, L., and Edidin, M., Biophysical Journal: 74, 2184-2190 (1998).
  • Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes., Hollars, C. and Dunn, R., Review of Scientific Instruments: 69, 1747-1752 (1998).
  • Large scanning area near field optical microscopy., Wei, P. and Fann, W., Review of Scientific Instruments: 69, 3614-3617 (1998).
  • Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies., Todorovic, M., and Schultz, S., Journal of Applied Physics: 83, 6229-6231 (1998).
  • Multi-functional SNOM/AFM probe with accurately controlled low spring constant., Muramatsu, H., Chiba, N., Yamamoto, N., Homma, K., Ataka, T., Shigeno, M., Monobe, H., and Fujihira, N., Ultramicroscopy: 71, 73-79 (1998).
  • Near-field optical and shear-force microscopy of single fluorophores and DNA molecules., Garcia-Parajo, M., Veerman, J.-A., Ruiter, A., and van Hulst, N., Ultramicroscopy: 71, 331-319 (1998).
  • Piezoelectrical shear-force distance control in near-field optical microscopy for biological applications., Hollricher, O., Brunner, R., and Marti, O., Ultramicroscopy: 71, 143-147 (1998).
  • Piezoelectric shear force detection: A geometry avoiding critical tip/tuning fork gluing., Salvi, J., Chevassus, P., Mouflard, A., Davy, S., Spajer, M., Courjon, D., Hjort, K., and Rosengren L., Review of Scientific Instruments: 69, 1744-1746 (1998).
  • Polarization effect in scanning near-field optic atomic-force microscopy (SNOM/AFM)., Nakajima, K., Y. Mitsuoka, Y., Chiba, N., Muramatsu, H., Ataka, T., Sato, K., and Fujihira, M., Ultramicroscopy: 71, 257-262 (1998).
  • Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy., Mitsuoka, Y., Nakajima, K., Homma, K., Chiba, N., Muramatsu, H., Ataka, T., and Sato, K., Journal of Applied Physics: 83, 3998-4003 (1998).
  • Single molecule detection and underwater fluorescence imaging with cantilevered near-field fiber optic probes., Talley, C., Lee, M., and Dunn, R., Applied Physics Letters: 72, 2954-2956 (1998).
  • Tuning fork shear-force feedback., Ruiter, A., van der Werf, K., Veerman, J., Garcia-Parajo, M., Rensen, W., and van Hulst, N., Ultramicroscopy: 71, 149-157 (1998).
  • A low-temperature scanning confocal and near-field optical microscope., Gohde, W., Tittel, J., Basche, T., Brauchle, C., Fischer, U., and Fuchs, H., Review of Scientific Instruments: 68, 2466 (1997).
  • A phase-locked shear-force microscope for distance regulation in near-field optical microscopy., Atia, W. and Davis, C., Applied Physics Letters: 70, 405-407 (1997).
  • A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films., Weston, K. and Buratto, S., Journal of Physical Chemistry B: 101, 5684-5691 (1997).
  • Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor., Edwards, H., Taylor, L., Duncan, W., and Melmed, A., Journal of Applied Physics: 82, 980-984 (1997).
  • Imaging 'intact' myofibrils with a near-field scanning optical microscope., Seibel, E. and Pollack, Journal of Microscopy: 186, 221-231 (1997).
  • Manipulation of nanometer objects: Friction, mechanical properties and devices., Superfine, R., Falvo, M., Paulson, S., Washburn, S., Clary, R., Chi, V., and Brooks, J., International Conference on Novel Materials: (1997).
  • Micromachined aperture probe tip for multifunctional scanning probe microscopy., Noell, W., Abraham, M., Mayr, K., Ruf, A., Barenz, J., Hollricher, O., Marti, O., and Guthner, P., Applied Physics Letters: 70, 1236-1238 (1997).
  • Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really?, Sandoghar, V., Wegscheider, S., Krausch, G., and Mlynek, J., Journal of Applied Physics: 81, 2499-2503 (1997).
  • Vacuum near-field scanning optical microscope for variable cryogenic temperatures., Behme, G., Richter, A., Suptitz, M., and Lienau, C., Review of Scientific Instruments: 68, 3458-3463 (1997).
  • Development of a near-field scanning optical microscope for imaging biological samples in physiological buffer., Seibel, E., Bioengineering: 145 (1996).
  • Fluorescence scanning near-field optical microscopy in reflection., Jalocha, A., Moers, M., and van Hulst, N., SPIE Proceedings: 2535, 38-45 (1996).
  • Light-induced expansion of fiber tips in near-field scanning optical microscopy., Lienau, C., Richter, A., and Elsaesser, T., Applied Physics Letters: 69, 325-327 (1996).
  • Resolution of an optical image of a scanning near-field optical/atomic force microscope as a function of sample-probe distance during synchronized irradiation., Chiba, N., Muramatsu, H., Nakajima, K., Homma, K., Ataka, T., and Fujihira, M., Thin Solid Films: 273, 331-334 (1996).
  • Scanning near-field optic/atomic force microscopy in liquids., Muramatsu, H., Chiba, N., Homma, K., Nakajima, K., Ataka, T., Ohta, S., Kusumi, A., and Fujihira, M., Thin Solid Films: 273, 335-338 (1996).
  • Tailoring a high-transmission fiber probe for photon scanning tunneling microscope., Saiki, T., Mononobe, S., Ohtsu, M., Saito, N., and Kusano, J., Applied Physics Letters: 68, 2612-2614 (1996).
  • Temperature profile of fiber tips used in scanning near-field optical microscopy., Stahelin, M., Bopp, M., Tarrach, G., Meixner, A., and Zschokke-Granacher, I., Applied Physics Letters: 68, 2603-2605 (1996).
  • Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities & beta of fluorescent molecules., Noordman, O., and van Hulst, N., Chemical Physics Letters: 253, 145-150 (1996).
  • Comparison of mechanically drawn and protection layer chemically etched optical fiber tips., Hoffman, P., Dutoit, B., and Salathe, R.-P., Ultramicroscopy: 61, 165-170 (1995).
  • Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy., Moers, M., Ruiter, A., Jalocha, A. and van Hulst, N., Ultramicroscopy: 61, 279-283 (1995).
  • Development of near-field optic atomic-force microscope for biological materials in aqueous solutions., Muramatsu, H., Chiba, N., Umenoto, T., Homma, K., Nakajima, K., Ataka, T., Ohta, S., Kusumi, A., and Fujihira, M., Ultramicroscopy: 61, 265-269 (1995).
  • Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection., Jalocha, A., and van Hulst, N., Optics Communications: 119, (1995).
  • Gold-coated parabolic tapers for scanning near-field optical microscopy: Fabrication and optimization., Garcia-Parajo, M., Tate, T., and Chen, Y., Ultramicroscopy: 61, 155-163 (1995).
  • Investigations of liquid crystals and liquid ambients using near-field scanning optical microscopy., Moyer, P., Kammer, S., Walzer, K., and Hietschold, M., Ultramicroscopy: 61, 291-294 (1995).
  • Kinetics, morphology and pulling regimes for sensing tips in near-field microscopy., Yakobson, B. and Paesler, M., Ultramicroscopy: 57, 241-245 (1995).
  • Multi-detection and polarisation contrast in scanning near-field optical microscopy in reflection., Jalocha, A., Moers, M., Ruiter, A. and van Hulst, N., Ultramicroscopy: 61, 221-226 (1995).
  • Piezoelectric tip-sample distance control for near field optical microscopes., Karrai, K. and Grober, R., Applied Physics Letters: 66, 1842-1844 (1995).
  • Piezo-electric tuning fork tip-sample distance control for near field optical microscopes., Karrai, K. and Grober, R., Ultramicroscopy: 61, 197-205 (1995).
  • Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and AFM., Fugihira, M., Monobe, H., Yamamoto, N., Muramatsu, H., Chiba, N., Nakajima, K., and Ataka, T., Ultramicroscopy: 61, 271-277 (1995).
  • Study of shear force technique for near-field microscopy with an uncoated fiber tip., Vohnsen, B., Bozhevolnyi, S., and Olesen, R., Ultramicroscopy: 61, 207-213 (1995).
  • Thermal/optical effects in NSOM probes., Yakobson, B., LaRosa, A., Hallen, H., and Paesler, M., Ultramicroscopy: 61, 179-185 (1995).
  • Tip optics for illumination NSOM: Extended-zone approach., Yakobson, B. and Paesler, M., Ultramicroscopy: 61, 204-207 (1995).
  • "Tunnel" near-field optical microscopy: TNOM-2., Hecht, B., Pohl, D., Heinzelmann, H., and Novotny, L., Ultramicroscopy: 61, 99-104 (1995).
  • The Fourier optics of near-field microscopy., Sheppard, C., Fatemi, H., and Gu, M., Scanning: 17, 28-40 (1994).
  • Resolution in collection-mode scanning optical microscopy., Buckland, E., Moyer, P., and Paesler, M., Journal of Applied Physics: 73, 1018-1028 (1993).
  • Resolution in near-field optical microscopy., Isaacson, M., Cline, J., and Barshatzky, H., Ultramicroscopy: 47, 15-22 (1992).
  • Breaking the diffraction barrier: optical microscopy on a nanometric scale., Betzig, E., Finn, P., and Weiner, J., Science: 251, 1468-1470 (1991).
  • Near-zone fields behind circular apertures in thick, perfectly conducting screens., Roberts, A., Journal of Applied Physics: 65, 2896-2899 (1988).
  • Study of near-fields of a small aperture., Leviathan, Y., Journal of Applied Physics: 60, 1577-1583 (1986).
  • Development of a 500 angstrom spatial resolution light microscope., Lewis, A., Isaacson, M., and Lewis, A., Ultramicroscopy: 13, 227-232 (1984).
  • Optical stethoscopy: Image recording with optical resolution lambda/20., Pohl, D., Denk, W., and Lanz, M., Applied Physics Letters: 44, 651-653 (1984).
  • Super-resolution aperture scanning microscope. Ash, E. and Nicholls, G., Nature: 237, 510-513 (1972).
  • Dynamics of a piezoelectric tuning fork/optical fiber assembly in a near-field scanning optical microscope., Shelimov, K., Davydov, D., and Moskovits, M., Review of Scientific Instruments: 2, RSINAK (1971).
  • Critical phenomena in gases II. Vapour pressures and boiling points., Lennard-Jones, J. and Devonshire, A., Proceedings of the Royal Society of London, Series A - Mathematical and Physical Sciences: 165, 1-11 (1938).
  • Critical phenomena in gases., Lennard-Jones, J. and Devonshire, A., Proceedings of the Royal Society of London, Series A - Mathematical and Physical Sciences: 163, 53-70 (1937).
  • Cohesion., Lennard-Jones, J., The Proceedings of the American Physics Society: 43, 461-482 (1931).

Sorry, this page is not
available in your country.

Sorry, this page is not available in your country