Evident LogoOlympus Logo

컬러 디지털카메라

Expand your vision in life sciences with a scientific microscope camera. The Olympus range offers a selection of digital microscope color cameras to suit different applications and budgets. Choosing the right balance of specifications is important when selecting the appropriate camera for your needs; our vast range covers applications from general biological research and teaching to pathology, cell culture, embryology, and drug discovery. Our microscope cameras offer a variety of image sensors and pixel sizes, and observation methods include fluorescence, brightfield, and infrared.

At Olympus, we know your image matters, and our digital microscope cameras help you see the details and enhance the quality of your work through cutting-edge optics, superior detail, and fast live imaging.

문의하기 

Digital Microscope Color Cameras

현미경 디지털카메라

LC35

품질 및 경제성을 모두 갖춘 LC35 디지털 현미경 카메라는 표준 명시야 이미징 응용 분야에 이상적입니다. 최대 40fps의 프레임 속도로 빠르고 쉽게 샘플을 탐색하세요. 모든 Olympus 현미경과 사용 가능하며 간단하고 원활하게 통합 및 설정할 수 있습니다.

  • 우수한 품질의 이미지를 합리적인 가격으로 제공하여 표준형 명시야 이미징 응용에 높은 가치를 제공
  • 최대 40fps의 프레임 속도로 빠르게 샘플을 탐색
  • Olympus 현미경 및 이미징 소프트웨어와 쉽게 통합

더 알아보기
 
현미경 디지털 카메라

DP74

선명한 형광 이미징이 가능한 냉각 CMOS 센서가 적용된 DP74 디지털 현미경 카메라는 60fps에서 고품질 컬러 이미지를 제공합니다. 또한 카메라’의 위치 내비게이터는 관심 영역의 시각적 추적을 제공합니다. 

  • 60fps에서 생표본의 고품질 컬러 이미지 제공
  • 위치 내비게이터를 통해 스티치 이미지 내 관심 영역을 시각적으로 추적
  • 냉각 CMOS 센서가 잡음이 적고 선명한 형광 이미지 확보 지원
더 알아보기
 
현미경 디지털 카메라

DP28

색상 정확도 및 4K 해상도를 제공하는 DP28 디지털 현미경 카메라’의 강력한 기능과 넓은 시야는 콘퍼런스, 교육, 임상 연구 등을 지원하는 이미지를 확보합니다. 카메라를 현미경 작업 흐름에 원활하게 통합하여 작업 효율 및 이미지 품질을 향상하세요. 

  • 4K 해상도
  • 사람 눈에 필적하는 색 재현율
  • 8.9메가픽셀 CMOS 센서
더 알아보기
 
현미경 디지털 카메라

DP23

대형 화면에서 선명하게 관찰할 수 있는 고품질 이미지를 빠르고 쉽게 확보할 수 있는 DP23 현미경 디지털 카메라를 사용하면 일상적인 생명 과학 및 임상 연구, 콘퍼런스, 교육이 용이해집니다. 카메라를 현미경 작업 흐름에 원활하게 통합하여 이미지를 쉽게 공유하거나 스트리밍하세요.  

  • DP23-AOU 네트워크 솔루션을 사용하여 이미지 공유
  • 대형 화면에서 라이브 이미지를 선명하게 관찰
  • 콘퍼런스 및 교육을 위한 신속한 고품질 이미징
더 알아보기
 
현미경 디지털 카메라

SC180

고해상도 SC180 현미경 디지털 카메라를 사용하여 샘플’의 미세한 세부 사항과 구조를 확인하고 기록하세요. 18메가픽셀 컬러 CMOS 센서가 장착된 이 카메라는 25fps에서 표현되는 고속 4K UHD 라이브 이미징을 제공합니다. 

  • 18메가픽셀 컬러 CMOS 센서로 미세한 세부 사항을 문서화
  • 유용한 정보를 얻을 수 있는 관찰을 위한 선명하고 잡음이 낮은 이미지
  • 고속 4K UHD 라이브 이미지
더 알아보기
 
현미경 디지털카메라

EP50

대화형 학습을 촉진하는 무선 기능이 있는 EP50 현미경 디지털카메라는 현미경을 무선 이미징 시스템으로 변환합니다. 완전 독립형 구성 기능을 탑재하여, 모바일 기기 또는 PC를 통해 EP50 카메라를 제어하고 WLAN 및 HDMI로 연결하여 모니터 또는 프로젝터에서 이미지를 스트리밍할 수 있습니다. 

  • 무선 디지털 이미징
  • WLAN 및 HDMI 동시 직접 출력
  • 완전 독립형 구성 사용 가능
  • 모바일 기기, PC와 함께 사용하거나 독립형 설정으로 모니터/프로젝터에 직접 스트리밍하기 위한 유연한 카메라 제어 옵션

    *이 제품은 일부 지역에서는 판매되지 않습니다
더 알아보기
 

 성공적으로 즐겨찾기에 추가하였습니다.

즐겨찾기   닫기

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Digital Microscope Camera FAQs

What is digital imaging?

Digital imaging is a broad term used to describe the electronic recording of images. You can capture just about anything digitally—from a sunset scene, to a microscope specimen, to a scanned document.

What is a digital image?

A digital image is made of a series of pixels, or picture elements. The computer reads the image file and displays the pixels to form an image on your monitor.

What are the advantages of digital imaging?

There are four core benefits of digital imaging for microscopy:

  • Permanent record: You can make infinite copies of the same digital image without losing image quality. As a result, digital imaging helps you preserve research slides and avoid issues with samples degrading.
  • Image sharing: Digital images can be sent electronically to remote colleagues, helping you save on the shipment fee of mailing a slide for a collaborative project.
  • Image adjustment: Using editing programs like our cellSens imaging software for microscopes, you can easily correct digital images to fix issues like poor contrast and excessive noise in just a few clicks.
  • Analyze quantitatively: Digital imaging provides data for quantitative image analysis, which can help you glean new insights. For instance, you can compare data points to previous imaging results in your database.

How can you improve digital imaging quality for microscopy?

To improve the quality of your microscopy images, choose appropriate optics and cameras with capabilities that match your application.

We offer online resources to help you find microscope objectives and cameras for your experiment. A great place to start is on our blog. Be sure to check out these blog posts for guidance: How to Choose the Right Microscope Objective: 10 Questions to Ask and 4 Tools to Choose the Right Microscope Camera.

Which digital microscope camera capabilities are most important?

There are numerous factors that contribute to image quality. In general, you can start with camera resolution and sensitivity. Sensitivity is how well the camera sensor detects light from the sample. Resolution is the amount of detail a camera can capture. But as we mentioned before, these capabilities must align with your optics, system, and application.

Consider this example: a high-resolution camera is a poor match for a low NA objective since it cannot recover the sample structure information lost through the optics. The reason is that the light spreads wider than the camera’s pixel pitch. In this case, a lower resolution camera will work with a lower NA objective.

Or, say you need to observe in the 700–900 wavelength (nm) range. It is important to select a camera that can detect these longer wavelengths.

There are many other factors to consider, so be sure to check out our white paper: What to Consider When Choosing a Microscope Camera.

Which type of microscope camera sensor should we choose?

There are several types of sensors with their own pros and cons:

  • CCD is an acronym for charge-coupled device. In simple terms, a CCD is a semiconductor chip with light-sensitive areas used as a sensor in digital cameras. CCD sensors work by capturing light and converting it into an electrical charge, which provides the digital pixel data that forms an image. Historically, CCD sensors were the best choice for scientific applications. But as new sensor technology emerges, this older technology is slowly becoming less common.
  • EMCCD stands for electron multiplying charge-coupled devices. EMCCD is a type of CCD sensor that amplifies the low-light signals above the CCD read noise. In conventional CCD, very low signal levels typically fall below the sensor read noise, which limits their imaging capabilities in applications that demand rapid frame-rate capture at extremely low light levels.
    EMCCD cameras are known for their ability to detect weak light—so you may hear them referred to as low-light cameras. Since they feature high sensitivity, they are useful tools for capturing fast biological phenomena at very low lights.
  • CMOS stands for complementary metal-oxide semiconductor and is the successor to CCD technology. The first and most important difference between CMOS and CCD is the readout architecture of the signal electron.
    Thanks to the multi-readout amplifier for an individual photo-sensing diode, CMOS has a significantly faster readout speed than CCD. The tradeoff of fast readout is rolling shutter distortion. Since CMOS scans across the image rapidly to collect data rather than capturing every pixel at once, the exposure time difference can sometimes result in distortion.
    In contrast, CCD sensors can avoid this distortion by collecting incoming photons while storing the charge, enabling it to read out every pixel at the same time.
    While CMOS historically provided a lower signal-to-noise ratio compared to CCD, today you can find many high-quality CMOS cameras. In addition, the introduction of global shutter CMOS overcame the distortion caused by rolling shutter.
  • sCMOS is an acronym for scientific complementary metal-oxide semiconductor—often shortened to scientific CMOS. sCMOS is a type of CMOS sensor with a large pixel size and quiet noise performance. It offers more sensitivity than conventional CMOS. sCMOS sensors are often cooled to minimize the dark current to achieve a higher signal-to-noise ratio, similar to cooled CCD sensors.
    The most important difference between sCMOS and EMCCD cameras is that sCMOS cameras lack the capability for long exposure. EMCCD cameras are preferred for long exposure or bioluminescence imaging applications with weak fluorescence signals, while sCMOS cameras are popular for their ability to work with a variety of imaging techniques.

The most suitable digital camera ultimately depends on your specific application, so don’t hesitate to contact us if you have any questions.

Digital Microscope Color Camera Resources

What to Consider When Choosing a Microscope Camera

We summarize the current methods and technologies used by microscope cameras as a guideline for achieving high-quality images for your observations and experiments.

Infographic

Download (PDF, 816 KB)

Infographic

Sorry, this page is not
available in your country.

도움이 필요하십니까?

문의하기

죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.