생명과학 솔루션

레이저 스캐닝 현미경

Laser scanning microscopy is used in biological research to obtain high-resolution, high-contrast imagery of a sample. Laser microscopes can scan samples point by point, resulting in optical sectioning that can be used to construct precise 3D imagery.
Olympus laser scanning microscopes are designed with a large range of imaging modalities to meet some of the most difficult challenges in the life sciences. Our laser scanning microscopes offer high sensitivity and speed, enabling live cell imaging alongside deep tissue observation. Choose from a range of laser microscope frames suited to a variety of life science applications, from cancer research and stem cell research to developmental biology and slide imaging.

문의하기 

Laser Microscopes

컨포칼 레이저 스캐닝 현미경

FV3000

  • 검류계 전용(FV3000) 또는 검류계/공진(FV3000RS) 하이브리드 스캐너 구성에 사용 가능
  • 모든 채널에 정확한 고효율 TruSpectral 검출
  • 고광도 및 저광독성으로 라이브 세포 이미징 최적화
다중 광자 레이저 스캐닝 현미경

FVMPE-RS

  • TruResolution 대물 렌즈 사용으로 최대화된 해상도 및 대비
  • 공진 스캐너 사용으로 고속 이미징
  • 1300nm까지 IR 다중 광자 여기 확대
  • 다중 광자 및 가시광 레이저 자극을 위한 3중 스캐너 옵션
  • 다중 광자 전용 대물 렌즈 및 스캐닝 장치의 1600 광학 코팅으로 고효율 투과
  • IR 레이저 빔의 4축 자동 정렬

 성공적으로 즐겨찾기에 추가하였습니다.

즐겨찾기   닫기

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Laser Scanning Microscope FAQs

What are the uses of a laser scanning microscope?

Laser scanning microscopes are used in life science research to understand intra- and intercellular processes that contribute to overall tissue function. Due to their inherent ability to optically section light, laser scanning microscopes enable accurate high-resolution volumetric imaging of thick tissue specimens without the need to physically section the sample.

How do laser scanning confocal microscopes work?

A laser scanning confocal microscope uses a pair of mirrors to direct a laser beam across a field of view. The microscope’s objective then focuses this light on the sample. The photons emitted from the fluorophores in the sample located at the focus point are collected by the objective and relayed back through the scanner, passing through a pinhole that is conjugate to the objective focal plane, which causes only the photons in focus to be detected by the photomultiplier tube. By imaging the photons at each point of the laser position, an image can be reconstructed pixel by pixel.

What is the minimum resolution of Olympus’ laser scanning microscopes?

Through improved detection, specific hardware settings, optimized confocal aperture diameter, and signal processing, Olympus created a super resolution module with improved contrast that can be applied to many different samples types and fluorophores. Olympus’ unique and proprietary FV-OSR super resolution technology realizes lateral (X-Y) resolution down to 120 nm.

Laser Scanning Microscopy Resource Videos

TruResolution Objectives
Maximize Resolution in Deep Imaging

This video shows you how TruResolution objectives automatically compensate spherical aberration in every plane of a volume image, delivering sharper and brighter 3D images at depth.

FV3000 Microscope in Cancer Research

In this video, Dr. Yuji Mishima of the Japanese Foundation for Cancer Research explains fluorescent imaging as a tool for research.

Sorry, this page is not
available in your country.

도움이 필요하십니까?

문의하기