Für Anwendungen in der biowissenschaftlichen und materialwissenschaftlichen Forschung
Die Laser-Scanning-Mikroskopie wird in der biologischen Forschung und in der Materialwissenschaft eingesetzt, um hochauflösende, kontrastreiche Bilder eines Präparats zu erhalten. Lasermikroskope können Präparate Punkt für Punkt abtasten, sodass optische Schnitte erstellt werden können, aus denen sich präzise 3D-Bilder konstruieren lassen. Durch die große Auswahl an Bildgebungsmodalitäten sind unsere Laser-Scanning-Mikroskope dafür ausgelegt, einige der schwierigsten Herausforderungen in den Bereichen Life Sciences und der Materialwissenschaft zu meistern. Sie zeichnen sich durch hohe Empfindlichkeit und Geschwindigkeit aus und ermöglichen die Bildgebung von Lebendzellen, die Betrachtung tiefer Gewebeschichten sowie die präzise Messung und Analyse von Proben. Es stehen verschiedene Laser-Scanning-Systemen für verschiedene wissenschaftliche Anwendungen zur Verfügung, beispielsweise für die Untersuchung biologischer Proben in der Krebsforschung und in der Entwicklungsbiologie, die metallurgische Bewertung der Oberflächenrauheit oder die Qualitätsprüfung von elektronischen Bauteilen wie Halbleitern und Batterien für Elektrofahrzeuge. Evident hat die passende Lösung für Ihre speziellen Anforderungen. |
---|
Please adjust your selection to be no more than 5 items to compare at once
Konfokale Laserscanning-Mikroskope werden in der Life Science Forschung für anatomische, physiologische und biochemische Studien auf molekularer und zellulärer Ebene an einer Vielzahl lebender und fixierter Proben eingesetzt. Dank ihrer inhärenten Fähigkeit zum optischen Lichtschnitt erlauben Laser-Scanning-Mikroskope eine präzise, hochauflösende und kontrastreiche Rekonstruktion von 3D-Strukturen aus einer Bilderserie, die in unterschiedlichen Tiefen aufgenommen wurde.
Wenn Sie mehr über die Einsatzmöglichkeiten der konfokalen Mikroskopie erfahren möchten, besuchen Sie unser Mikroskopie-Ressourcencenter.
Die konfokale Mikroskopie bietet gegenüber der konventionellen optischen Weitfeldmikroskopie mehrere Vorteile, beispielsweise die Möglichkeit zur Steuerung der Schärfentiefe, die Eliminierung oder Reduzierung von Hintergrundinformationen außerhalb der Brennebene (hohes Signal-Rausch-Verhältnis) und die Möglichkeit, optische Serienschnitte dicker Proben zu erstellen. Im Mittelpunkt des konfokalen Ansatzes steht die Verwendung räumlicher Filtertechniken, um Licht außerhalb des Fokus oder Lichtreflexe in Proben außerhalb des unmittelbaren Sichtfeldes zu eliminieren.
Ein konfokales Lasermikroskop mit Punktabtastung erstellt optische Schnitte einer Probe, indem es ein Sichtfeld mit einem fokussierten Laserpunkt Punkt für Punkt abtastet. Das Objektiv des Mikroskops fokussiert dann dieses Licht auf das Präparat. Die von den Fluorophoren im Präparat im Brennpunkt emittierten Photonen werden vom Objektiv gebündelt und durch den Scanner zurückgesendet, wobei sie eine zur Brennebene des Objektivs konjugierte Lochblende passieren, sodass nur die Photonen im Brennpunkt vom Photomultiplier erfasst werden. Durch die Abbildung der Photonen an jedem Punkt der Laserposition kann ein Bild Pixel für Pixel rekonstruiert werden.
Wenn Sie mehr über konfokale Mikroskopie erfahren möchten, besuchen Sie unser Mikroskopie-Ressourcencenter.
Die Multiphotonenmikroskopie ist eine hervorragende Technik zur Tiefendarstellung dicker Proben, insbesondere bei In-vivo-Experimenten. Stark gebündelte Laserpulse im Nah-Infrarot-Bereich (NIR) dringen tiefer in biologisches Gewebe ein als sichtbares Licht, da NIR-Licht weniger stark absorbiert und gestreut wird. Zur Bildgebung wird die Probe mit einem gepulsten Laser abgetastet, wobei in der Regel Wellenlängen von 700 bis 1300 nm zur Anregung verwendet werden. Die Mehrphotonenanregung ist von Natur aus auf die Fokusebene beschränkt, sodass die Phototoxizität verringert wird. Vor allem aber ist für den optischen Schnitt keine konfokale Lochblende erforderlich, sodass mehr Lichtsignale – einschließlich gestreuter Fluoreszenzphotonen – erfasst werden können. Das Ergebnis sind helle, detaillierte 3D-Bilder tief liegender Schichten dicker Proben.
Entdecken Sie das Olympus FVMPE-RS Multiphotonen-Laser-Scanning-Mikroskop.
Insgesamt ist die Auflösung bei der konfokalen Mikroskopie deutlich besser als bei herkömmlichen Weitwinkelmikroskopietechniken. Da die Auflösung in der Laser-Scanning-Mikroskopie von der numerischen Apertur (NA) des Objektivs abhängt, ist die Verwendung von Objektiven mit hoher NA entscheidend für ein hochauflösendes Bild. Olympus bietet eine Reihe von Objektiven mit hoher NA, beispielsweise unsere X Line Objektive mit hoher numerischer Apertur (NA), Bildfeldebnung und chromatischer Korrektur zur Verbesserung der Bildauflösung in einem größeren Sichtfeld. Für die Darstellung tief liegender Gewebe eignen sich unsere A Line Silikonimmersionsobjektive, da ihr Brechungsindex dem von lebenden Zellen sehr nahe kommt. Dadurch wird eine hellere 3D-Bildgebung mit höherer Auflösung und minimaler sphärischer Aberration möglich.
Für eine stärkere Auflösung beim Deep Imaging mit unserem FVMPE-RS-Multiphoton-System sind die TruResolution Objektive mit einem automatischen Korrekturring ausgestattet, der sphärische Aberrationen dynamisch ausgleicht und dabei die genaue Fokusposition beibehält. Die Objektive passen sich automatisch an jede Ebene eines Volumenbildes an und liefern schärfere und hellere 3D-Tiefenbilder.
Um Bildunschärfen zu beseitigen und klarere, schärfere hochauflösende Bilder bei der Bildverarbeitung zu erzeugen, hat Olympus spezielle TruSight 2D und 3D Dekonvolutionsalgorithmen für konfokale Laser- und Olympus Super Resolution(OSR)-Bilder entwickelt.
Für Untersuchungen, die eine höhere Auflösung erfordern, beispielsweise Kolokalisationsanalysen, kann das Olympus Super Resolution (OSR) Imaging-Modul für das FV3000-System vier Fluoreszenzsignale nacheinander oder gleichzeitig mit einer lateralen (X-Y) Auflösung von ca. 120 nm erfassen. Im Vergleich zu typischen konfokalen Mikroskopen ist die Auflösung somit nahezu verdoppelt.
Möchten Sie mehr über Olympus Super Resolution erfahren?
Das Mikroskop FV3000 aus der FLUOVIEW-Serie kann je nach Anwendung mit einer Vielzahl von Objektiven mit einer Vergrößerung von 1,25X bis 150X verwendet werden. Objektive mit geringer Vergrößerung von 1,25X bis 4X sind geeignet, um die Struktur des Gewebes insgesamt im Überblick darzustellen. Um die Morphologie der Zellen, aus denen das Gewebe besteht, zu erfassen, werden Objektive mit mittlerer Vergrößerung zwischen 10X und 40X verwendet. Zur Aufnahme der Mikrostruktur innerhalb der Zellen werden in der Regel Objektive mit hoher Vergrößerung (60X oder höher) eingesetzt. Durch optisches Zoomen kann die Vergrößerung des Bildes bei verringertem Winkel des Scan-Spiegels auf das 50-Fache der Objektivvergrößerung gesteigert werden.
Die Zusammenstellung eines Systems mit einem Laser-Scanning-Mikroskop erfolgt in Abstimmung auf Ihr Budget und Ihre Anwendung. Wenn Sie nur ein bestimmtes Objekt untersuchen möchten, kann die Anzahl der Laser, Detektoren und Objektivtypen begrenzt werden, um ein System zu einem erschwinglichen Preis zusammenzustellen. Sollten sich Ihre Forschungsziele im Laufe der Zeit ändern und weiterentwickeln, kann das System nachträglich um entsprechende zusätzliche Elemente erweitert werden.
Wenden Sie sich an Ihren Olympus Händler vor Ort, um weitere Informationen über unsere konfokalen Laser-Scanning-Systeme zu erhalten und ein Angebot anzufordern.
TruResolution-Objektive
| Related Videos |
---|
FV3000 Mikroskop in der KrebsforschungIn diesem Video erklärt Dr. Yuji Mishima von der Japanese Foundation for Cancer Research, wie die Fluoreszenzbildgebung als Hilfsmittel in der Forschung eingesetzt wird. | Related Videos |
Not Available in Your Country
Sorry, this page is not
available in your country.
You are being redirected to our local site.