Life Science Solutions

Microscópios de varredura a laser

Laser scanning microscopy is used in biological research to obtain high-resolution, high-contrast imagery of a sample. Laser microscopes can scan samples point by point, resulting in optical sectioning that can be used to construct precise 3D imagery.
Olympus laser scanning microscopes are designed with a large range of imaging modalities to meet some of the most difficult challenges in the life sciences. Our laser scanning microscopes offer high sensitivity and speed, enabling live cell imaging alongside deep tissue observation. Choose from a range of laser microscope frames suited to a variety of life science applications, from cancer research and stem cell research to developmental biology and slide imaging.

Get in Touch 

Laser Microscopes

Microscópio de escaneamento a laser confocal


  • Disponível para configurações de escâner híbrido galvanômetro/ressonante (FV3000RS) ou apenas galvanômetro (FV3000)
  • Detecção TruSpectral extremamente precisa e eficiente em todos os canais
  • Otimizado para imagem de célula viva com alta sensibilidade e baixa fototoxicidade
  • Inverted and upright frame options to suit a variety of applications and sample types
Microscópio de varredura a laser multifóton


  • Resolução e contraste maximizados com as objetivas TruResolution
  • Formação de imagem de alta velocidade com escâner ressonante
  • Excitação multifóton de infravermelho alargada até 1.300 nm
  • Opção de escâner triplo para estimulação luminosa a laser visível e multifóton
  • Transmissão altamente eficiente com 1.600 revestimentos ópticos nas objetivas multifóton dedicadas e na unidade de varredura
  • Alinhamento automático de 4 eixos de feixes de laser infravermelho

 was successfully added to your bookmarks

View Bookmarks   Close

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Laser Scanning Microscope FAQs

What are the uses of a laser scanning microscope?

Laser scanning microscopes are used in life science research to understand intra- and intercellular processes that contribute to overall tissue function. Due to their inherent ability to optically section light, laser scanning microscopes enable accurate high resolution volumetric imaging of thick tissue specimens, without the need to physically section the sample.

How do laser scanning confocal microscopes work?

A laser scanning confocal microscope uses a pair of mirrors to direct a laser beam across a field of view. The microscope’s objective then focuses this light on the sample. The photons emitted from the fluorophores in the sample located at the focus point are collected by the objective and relayed back through the scanner, passing through a pinhole that is conjugate to the objective focal plane, which causes only the photons in focus to be detected by the photomultiplier tube. By imaging the photons at each point of the laser position, an image can be reconstructed pixel by pixel.

What is the minimum resolution of Olympus’ laser scanning microscopes?

Through improved detection, specific hardware settings, optimized confocal aperture diameter, and signal processing, Olympus created a super resolution module with improved contrast that can be applied to many different samples types and fluorophores. Olympus’ unique and proprietary FV-OSR super resolution technology realizes lateral (X-Y) resolution down to 120 nm.

Laser Scanning Microscopy Resource Videos

TruResolution Objectives
Maximize Resolution in Deep Imaging

This video shows you how TruResolution objectives automatically compensate spherical aberration in every plane of a volume image, delivering sharper and brighter 3D images at depth.

FV3000 Microscope in Cancer Research

In this video, Dr. Yuji Mishima of the Japanese Foundation for Cancer Research explains fluorescent imaging as a tool for research.

Sorry, this page is not
available in your country.

Precisa de ajuda?