Evident LogoOlympus Logo
Note d’application

Application of the Z-Drift Compensation System IX-ZDC to multidimensional cell-based assay at the single cell level


Multidimensional cell-based assay at the single cell level

A cell-based assay system that facilitates efficient multi-sample data collection enables researchers to observe dose-dependent physiological activity at the single-cell level to study physiological reactions and cell response. In this type of assay, cells are typically cultured in a multiwell plate. Inverted microscopes are then used to observe physiological reactions of how cells respond when different doses of drugs are added to an individual well.

Inverted microscopes with z-drift compensation systems can perform fully automated, continuous observation  over several days, which is important for monitoring cell growth or testing the toxicity of drugs. The ability to image multidimensional drug dose-dependent cell growth and intracellular physiological activity is important for advancing cell-based assays.

Using the IX-ZDC z-drift compensator to help analyze resistance of cancer cells to MEK inhibitors using FRET biosensor

1)Visualization of extracellular signal-regulated kinases (ERKs) using Förster resonance energy transfer (FRET) biosensor

The Ras-Raf-MEK-ERK signaling pathway is well known for its association with cancer development and is a target for molecular chemotherapy drugs. However, the pathway’s association with anticancer drug resistance is unclear. In order to better understand the role of the Ras-Raf-MEK-ERK signaling pathway in anticancer drug resistance, researchers at the Graduate School of Medicine, Kyoto University, Japan analyzed resistance to MEK inhibitors in multiple cancer cell lines using a FRET biosensor that enables researchers to visualize the activity of the ERK protein kinase, which is a component of the Ras-Raf-MEK-ERK signaling pathway.

Fig 1. Structure of the FRET biosensor for visualization of ERK or S6K activity

Fig 1. Structure of the FRET biosensor for visualization of ERK or S6K activity
Phosphorylation of ERK or S6K substrate in the FRET biosensor molecule causes it to intra-molecularly bind to the phosphopeptide-binding domain (WW or FHA1) resulting in an increase in the FRET efficiency between the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP).

2)Using the IX-ZDC z-drift compensator to construct a multidimensional cell-based assay system

HT-29 cells (with BRAF V600E mutation) expressing FRET (Fig. 1) were cultured in a 96-well glass plate. After adding different doses of an MEK1/2 inhibitor (AZD6244) to individual wells, a fully-motorized, inverted Olympus IX Series microscope was used to continually observe the change in intracellular ERK activity and cell growth in each well for 3 days. The IX-ZDC z-drift compensator automatically adjusted the focus each time one of the wells was imaged, enabling researchers to capture images that were always in focus, even during long-term observation.

Fig 2. Using the IX-ZDC Z-drift compensator with a multidimensional cell-based assay system
Fig 2. Using the IX-ZDC Z-drift compensator with a multidimensional cell-based assay system
Bright spots in the images correspond to the nuclei of cells expressing the FRET biosensor for detecting ERK activity.
The warmer and cooler colors indicate higher and lower levels of ERK activity, respectively.

3)Quantitative analysis of MEK1/2 inhibitor dose-dependent ERK activity and cell growth rate

In order to analyze the dose-dependent response of HT-29 cells (with BRAF V600E mutation) to the MEK1/2 inhibitor (AZD6244) from the data obtained by the multidimensional cell-based assay described above (Fig. 2), the researchers generated a graph (Fig. 3) by plotting the MEK1/2 inhibitor (AZD6244) concentration on the x-axis, growth rate (/day) on the left y-axis, and ERK activity on the right y-axis (using a data set generated up to one day after the addition of the MEK1/2 inhibitor). To analyze the relationship between the MEK1/2 inhibitor dose-dependent ERK activity and the growth rate, they generated a second graph (Fig. 4) by plotting the ERK activity on the x-axis and growth rate on the y-axis. These graphs revealed that HT-29 cells exhibited almost identical IC50 values for both ERK activity and cell growth rate and that there was a linear correlation between ERK activity and cell growth rate.
 

Fig 3. Dose-dependent response of ERK activity and cell growth rate on the MEK1/2 inhibitor (AZD6244) in HT-29 cellsFig 4. Relationship between the MEK1/2 inhibitor (AZD6244) dose-dependent ERK activity and cell growth rate in HT-29 cells

Fig 3. Dose-dependent response of ERK activity and cell growth rate on the MEK1/2 inhibitor (AZD6244) in HT-29 cells

Fig 4. Relationship between the MEK1/2 inhibitor (AZD6244) dose-dependent ERK activity and cell growth rate in HT-29 cells

4)MEK1/2 inhibitor dose-dependent ERK activity and cell growth rate in multiple cancer cell lines

By repeating the same analysis in cancer cell lines other than HT-29 cells, researchers found that the IC50 values of the MEK1/2 for ERK activity were similar to each other in various cancer cell lines (~0.01 μM); and in MEK1/2 resistant cancer cell lines (KRas-mutant cell lines), the IC50 for the cell growth rate was more than 10 times higher than the IC50 for ERK activity, resulting in a nonlinear correlation between ERK activity and cell growth rate.

This study required large volumes of imaging data, and the efficient analysis of resistance to the MEK inhibitor in cancer cells would not have been possible without the IX-ZDC z-drift compensator for the inverted IX Series microscope.

Fig 5. Comparison of IC50 values of the MEK1/2 inhibitor (AZD6244) for ERK activity and cell growth rates in multiple cancer cell lines

Fig 5. Comparison of IC50 values of the MEK1/2 inhibitor (AZD6244) for ERK activity and cell growth rates in multiple cancer cell lines

Imaging conditions
Microscope: Motorized inverted IX Series microscope.
Z-drift compensation system: IX-ZDC
Objective: UPLSAPO20X, dry
Microplate: 96-well glass microplate

Conclusion
IX-ZDC z-drift compensator supports multidimensional cell-based assays

Olympus’ IX-ZDC z-drift compensator and the motorized, inverted IX Series microscope enable the material in individual wells within a microplate to be imaged clearly for experiments lasting multiple days. With the autofocus function, a 96-well plate can be completely imaged in about 2 minutes,* supporting a highly precise and rapid cell-based assay.

*For serial imaging of one spot in each well of a 96-well plate with a 30 ms exposure time.

Movie of UCPLFLN20XPH to multidimensional cell-based assay at the single cell level

This application note was prepared with the help of:
Dr. Naoki Komatsu, Assistant Professor, Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Japan and Dr. Kazuhiro Aoki, Designated Associate Professor, Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Japan.

For more details on the study in this application note, please see:
Komatsu, N., Y. Fujita, M. Matsuda, and K. Aoki. "mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells." Oncogene 34, no. 45 (2015): 5607–5616

Produits utilisés pour cette application

Microscope confocal à disque rotatif et à très haute résolution

SpinSR10

  • Live cell super resolution imaging
  • Observation at depth
  • A flexible system that helps simplify your research
Le système de microscope inversé entièrement motorisé et automatisé

IX83

  • Système de plate-forme unique
  • Système entièrement motorisé
  • Solutions système
Système de microscope pour imagerie de cellules vivantes

IXplore Live

  • Utilisation du contrôleur en temps réel d’Olympus pour l’obtention de données physiologiques pertinentes avec une perturbation minimale des cellules
  • Préservation de la viabilité des cellules lors de la prise d’images grâce à diverses options de contrôle environnemental
  • Maintien d’une mise au point précise et fiable lors d’expériences à prises d’images intermittentes à l’aide du système matériel de mise au point automatique d’Olympus (compensation de la dérive en Z)
  • Découverte de la forme réelle des cellules grâce aux systèmes optiques à immersion dans l’huile de silicone d’Olympus
Système de microscope automatisé

IXplore Pro

  • Observation multidimensionnelle automatisée et configuration facile des expériences
  • Amélioration de vos statistiques lors de vos analyses de plaques multi-puits
  • Acquisition d’images de fluorescence panoramiques pour des échantillons de grande taille, telles que des coupes de cerveau
  • Augmentation de la résolution et création de sections optiques avec déconvolution
  • Création de coupes optiques 3D et amélioration de la résolution grâce à la technologie TruSight
Système de microscope pour imagerie confocale

IXplore Spin

Le système IXplore Spin comprend une unité confocale à disque rotatif qui permet une acquisition d’images 3D à grande vitesse et assure un grand champ de vision et une viabilité prolongée des cellules dans les expériences en imagerie à intervalles. Les chercheurs peuvent l’utiliser pour réaliser une imagerie confocale 3D rapide avec une résolution et un contraste élevés plus profondément dans les échantillons épais. Le disque rotatif permet également de réduire le photoblanchiment et la phototoxicité des échantillons lors de l’excitation.

  • Contrôleur en temps réel (U-RTCE) permettant l’optimisation de la vitesse et de la précision de l’appareil pendant l’acquisition automatisée
  • Système de compensation de la dérive Z TruFocus™ maintenant la mise au point pour chaque image
  • Imagerie 3D précise avec amélioration de la captation de la lumière grâce aux objectifs X Line™
  • Passez au système à super-résolution IXplore SpinSR au gré de l’avancement de vos travaux de recherche
Système de microscope à très grande résolution

IXplore SpinSR

Le système IXplore SpinSR est notre microscope confocal à super-résolution optimisé pour l’imagerie 3D de cellules vivantes. Comme le système IXplore Spin, il est équipé d’un système à disque rotatif qui permet une imagerie 3D rapide et qui limite en même temps la phototoxicité et le blanchiment. Il permet toutefois aussi d’obtenir des images à super-résolution jusqu’à 120 nm dans le plan XY et de basculer entre les modes champ large, confocal et super-résolution d’un simple clic.

  • Imagerie à super-résolution nette et claire jusqu’à 120 nm dans le plan XY, grâce à la technologie Olympus Super Resolution (OSR)
  • Viabilité prolongée des cellules lors de l’imagerie confocale à prises d’images intermittentes en raison d’une phototoxicité et d’un blanchiment réduits
  • Utilisez deux caméras simultanément pour réaliser rapidement de l’imagerie à super-résolution bicolore
  • Imagerie en super-résolution avec les premiers objectifs apochromatiques plans au monde dotés d’une ouverture numérique (ON) de 1,5*
* En date de novembre 2018. À la connaissance d’Olympus.
Système de microscope pour imagerie TIRF

IXplore TIRF

Pour les expériences de dynamique membranaire, de détection monomoléculaire et de colocalisation, le système TIRF IXplore permet de réaliser de l’imagerie TIRF (fluorescence par réflexion totale interne) multicolore simultanée d’une grande sensibilité avec jusqu’à quatre couleurs. Le système cellTIRF d’Olympus comprend un contrôle motorisé de l’angle de chaque laser d’une grande stabilité, ce qui assure une pénétration égale des ondes évanescentes pour produire des images à contraste élevé et à faible bruit. Nos objectifs TIRF présentent un rapport signal sur bruit élevé et une grande ouverture numérique et sont dotés de bagues de correction pour ajuster leur performance à l’épaisseur de la lamelle couvre-objet et à la température.

  • Colocalisation exacte d’un maximum de quatre marqueurs grâce au contrôle individuel de la profondeur de pénétration
  • Profitez de l’objectif TIRF d’Olympus doté de la plus grande ouverture numérique au monde, à 1,7*
  • Configuration intuitive des expériences complexes avec le gestionnaire d’expériences graphique (GEM), cellFRAP et U-RTCE
* En date du 25 juillet 2017. À la connaissance d’Olympus.
Objectifs semi-apochromatiques pour récipient de culture

UCPLFLN/LUCPLFLN

Permettant l’observation de cultures tissulaires à travers des flacons et des boîtes, ces objectifs universels semi-apochromatiques se caractérisent par une longue distance de travail ainsi qu’un contraste et une résolution élevés. Assurant des images planes et un facteur de transmission élevé jusqu’à la région du proche infrarouge, ils sont bien adaptés à l’observation en fond clair, en CID et de fluorescence.

  • Objectifs universels à grande distance de travail assurant un excellent contraste et une grande résolution pour les observations en fond clair, en CID et de fluorescence
  • Forment des images planes avec des facteurs de transmission élevés jusqu’à la région du proche infrarouge du spectre
  • Spécialement conçus pour les observations des cultures tissulaires à travers les flacons et les boîtes
Dispositif de compensation de la dérive en Z

IX3-ZDC2

  • Toujours net
  • Conçu pour être facile à utiliser
  • Dédié à l'imagerie de cellules vivantes
  • Imagerie haute précision, multi-zones avec le logiciel cellSens

a bien été ajouté à vos favoris

Afficher les favorisFermer

Maximum Compare Limit of 5 Items

Please adjust your selection to be no more than 5 items to compare at once

Sorry, this page is not
available in your country.

Sorry, this page is not available in your country