Evident LogoOlympus Logo

Ask the Experts

Alec De Grand
Alec De Grand

Alec De Grand

제품 관리자

저는 Alec De Grand 입니다. Olympus의 가상 슬라이드 스캐닝 및 정립 현미경 담당 제품 관리자입니다. Olympus에서 10년 넘게 일하면서 임상 제품, 마케팅 계획, 이미징 강좌 및 전시회를 관리하였습니다.

Bülent Peker

Bülent Peker

제품 마케팅 수석 관리자

안녕하세요. Bülent Peker 입니다. 레이저 스캐닝 현미경의 지정 전문가입니다. 물리화학 박사 과정에서 시간 분해 2광자 현미경을 연구하였으며 이때 현미경 및 광산업에 처음으로 관심을 가지게 되었는데 이후 이러한 열정이 계속 되었습니다. Olympus에 일한 지 13년이 넘었으며 첨단 레이저 스캐닝 현미경 시판 팀에서 활동하였습니다. 다광자 시스템의 응용과 레이저 스캐닝 시스템의 맞춤화 가능성에 특히 관심이 많습니다. 

Chunsong Yan

Chunsong Yan

사업 개발 관리자, 생명과학

안녕하세요. Chunsong Yan입니다. Olympus 호주 및 뉴질랜드에서 생명과학 부문 사업 개발 관리자입니다. 현재 공초점, 다광자, 단면광 및 슬라이드 스캐닝 시스템을 담당하고 있습니다. 2003년에 Olympus에 입사하여 다양한 직무를 수행하였으며 고객에게 최고의 Olympus 솔루션을 제공하기 위해 항상 최선을 다하고 있습니다.

Daniel Bemmerl

Daniel Bemmerl

지역 담당 관리자, 고급 현미경 시스템

Daniel Bemmerl입니다. 3D 고함량 분석 및 오르가노이드 이미징 관련 업무를 담당하고 있습니다. TIRF 현미경 및 고함량 스크리닝 응용 전문가로 Olympus에 입사하여 현재 3D 분석 소프트웨어를 전문으로 다루고 있습니다. 분자 및 발달 줄기 세포 생물학을 전공하였으며 이미징을 수행하는 표본보다는 연구의 기술적 측면과 특히 이미징 자체에 더 많은 관심을 가지고 있음을 빨리 깨달았습니다. 실험실 밖에서 작업을 수행하고 고객과 개발 간 교량 역할을 하는 것이 좋아서 Olympus 생명과학에 오게 되었습니다. 3D 이미징에 대한 어떠한 질문도 환영하며 연구에 초점을 맞추도록 이미징 워크플로를 향상시키는 일을 도와 드리겠습니다.

Dr. Nicolas Bourg

Dr. Nicolas Bourg

Abbelight의 기술담당 최고 책임자 겸 공동 창업자

안녕하세요. Abbelight의 기술담당 최고 책임자(CTO) 겸 공동 창업자이자 단일 분자 편재화 현미경(SMLM - PALM, dSTORM, SPT-PALM 및 DNA-PAINT 등의 기술이 포함되는 나노스코피(nanoscopy)라고도 함)의 지정 전문가인 Dr. Nicolas Bourg입니다. Paris-Saclay 대학에서 광전자를 전공하고 생명광학 박사를 취득하였으며 전례 없는 해상도로 고유한 3D 나노스코피 기술을 연구하였습니다. 박사 과정 중 획득한 모든 지식을 연구팀과 공유하기로 결정한 후 나노스코피를 훨씬 더 강력하게 만들고 고급 현미경 교육 없이도 모든 생물학자가 전적으로 접근할 수 있도록 하기 위해 Abbelight를 설립하였습니다. 나노스코피에 대한 모든 질문을 환영합니다. 언제라도 문의하십시오.

Flavio Giacobone

Flavio Giacobone

제품 마케팅 관리자

Flavio Giacobone입니다. Olympus 유럽 시장 전체의 슬라이드 스캐닝 솔루션을 담당하고 있습니다. 생물의학 엔지니어링 전공에서 관심이 시작된 이후에 이미징이 체질화되었습니다. Olympus에 입사한 후에는 여러 임상 및 연구 분야에서 발생되는 디지털로의 이동을 직접 경험할 수 있었습니다. Olympus의 최초 스캐너인 dotSlide에서 비롯된 전체 슬라이드 이미징에 대한 전문 지식을 쌓았으며, 이는 최초 제품 이후의 발전 사항을 현장에서 직접 확인하는 계기가 되었습니다.

Ganesh Kadasoor

Ganesh Kadasoor

Olympus Medical Systems India Ltd의 응용 전문가

Ganesh Kadasoor입니다. 인도에서 15년간 Olympus 고급 이미징 관련 업무를 담당하였습니다. 인도 Mysore 대학에서 생명과학 이학사 및 석사를, 위생곤충학 박사를 각각 취득하였습니다. 라이브 셀 이미징 시스템, 레이저 스캐닝 공초점, TIRF, 회전 디스크 공초점, 초고해상도 및 다광자 현미경 같은 모든 고급 이미징 시스템을 관리하는 공초점 전문가로 Olympus에 입사하였습니다. 현재 전국 과학자, 학계 및 대리점 네트워크 대상 교육 프로그램 실시와 관련된 Olympus Medical Systems India Ltd, Bangalore의 전국 관리자(응용 지원)로 근무 중입니다 . 또한, 인도에서 다양한 현미경 및 이미징 워크숍, 세미나 및 웨비나를 조직하는 업무를 담당하고 강사/트레이너로 전국 및 국제 현미경 강좌를 지원하고 있습니다.

Heiko Gäthje

Heiko Gäthje

수석 트레이너, 교육 아카데미

안녕하세요, Heiko Gäthje입니다. 생물학자로서 근무할 때 시작된 광시야 및 공초점 형광 현미경과 3D 데이터의 이미지 처리를 전문으로 다루고 있습니다. 곤충의 뉴런 발달 및 포유류의 뉴런 단백질을 결합하는 시알산의 구조에 초점을 맞추었습니다. 2004년에 Olympus에 입사하였으며 2008년 이후 Olympus Academy의 현미경 트레이너로 디지털 학습 도구의 개념화 및 소개를 담당하였습니다. 또한, EMBL 하이델베르크 연구소 및 취리히 Winter School on Advanced Microscopy에서 현미경 교육 강좌를 지원하고 실시하면서 이미지 처리 및 이미지 분석과 관련된 많은 물음에 답하고 있습니다.

Irina Rakotoson

Irina Rakotoson

생명과학 제품 관리자

안녕하세요. Irina입니다. 단면광 현미경에 대해 이야기를 나누고 싶습니다. 파리 Descartes 대학에서 에이징을 전공하고 세포 생물학, 생리학 및 병리학 석사를 취득하였습니다. 제품 관리자로 PhaseView에 입사하기 전에 신경과학 연구실험실(SPPIN)에서 근무하면서 현미경 핵심 시설의 세척 프토토콜을 최적화하였습니다.

Junsung Kim

Junsung Kim

Olympus 한국의 제품 전문가

안녕하세요, Junsung Kim입니다. Olympus 한국의 공초점 현미경의 제품 전문가입니다. 고려대학교 생명공학 석사를 취득하였습니다. 2014년에 Olympus에 입사하였으며 Olympus 공초점 및 다광자 현미경과 관련하여 고객에게 응용 지원을 제공하고 있습니다.

Kathy Lindsley

Kathy Lindsley

응용 전문가, 생명과학 응용

Kathy Lindsley입니다. Olympus의 응용 전문가로 카메라 기반 이미징 시스템을 지원하고 있습니다. 아이오와 주립 대학에서 생화학 이학사를 취득하였습니다. 2006년에 연구 이미징 판매대리인으로 Olympus에 입사하였으며 2012년에 생명과학 응용 그룹으로 전직하였습니다. Olympus에 입사하기 전에는 15년 동안 학술 연구에서 연구 보조로 일하면서 패치 클램프, 칼슘 이미징, 조직 배양 및 면역조직화학의 경험을 쌓았습니다.

Lauren Alvarenga

Lauren Alvarenga

제품 관리자, 생명과학 현미경

안녕하세요. Lauren Alvarenga입니다. Olympus에서 연구 이미징 담당 제품 관리자로서 현재 이미징 소프트웨어와 도립 및 초고해상도 현미경을 담당하고 있습니다. Rochester Institute of Technology에서 생물의학 사진 커뮤니케이션 이학사를 취득하였습니다.
부갑상선 호르몬에 의한 신장 인산염 운반기 Npt2a의 전사 후 조절 2015년에 Olympus에 입사하였으며 현재 미국, 캐나다 및 라틴 아메리카의 FLUOVIEW 제품 라인을 지원하고 있습니다.

Manoel Veiga

Manoel Veiga

응용 전문가, 생명과학 연구

안녕하세요. Manoel Veiga입니다. Olympus의 소프트웨어의 딥 러닝을 구현한 팀에 소속되어 있습니다. 2017년에 Olympus에 입사하여 고함량 스크리닝, 이미지 분석 및 딥 러닝의 전문 기술을 개발하였습니다. 형광 수명 이미징의 전문가이기도 합니다. 물리화학 박사 과정 중에 데이터 분석에 처음 관심을 가지게 되었습니다. 이러한 관심은 콘볼루션 신경망의 파워 및 해결할 수 있는 놀라운 이미지 분석 과제를 발견한 후에 더욱 발현되었습니다.

Minju Kim

Minju Kim

Olympus 한국의 제품 전문가

안녕하세요, Olympus 한국의 생물 현미경의 제품 전문가인 Minju Kim입니다. 2010년에 Olympus에 입사하여 라이브 셀 및 형광 이미징 시스템의 고급 현미경 영업 및 제품 전문가로 활동하고 있습니다. 또한, 한국의 대리점을 위한 교육 프로그램을 담당하고 있습니다.

Rebecca Bonfig

Rebecca Bonfig

제품 관리자, 공초점 현미경

안녕하세요. Olympus의 공초점 현미경 제품 관리자인 Rebecca Bonfig입니다. 루이빌 대학에서 물리학 및 생물물리학과 대학원 과정을 이수하고 부갑상선 호르몬에 의한 신장 인산염 운반기 Npt2a의 전사 후 조절을 연구하였습니다. 2015년에 Olympus에 입사하였으며 현재 미국, 캐나다 및 라틴 아메리카의 FLUOVIEW 제품 라인을 지원하고 있습니다.

Shohei Imamura

Shohei Imamura

Strategic Project Manager, Regenerative Medicine and Drug Discovery Solutions

Olympus의 전략적 프로젝트 관리자인 Shohei Imamura입니다. 과학 현미경 영업 부문에서 4년, 소프트웨어 관련 제품 기획 부문에서 7년을 종사하였습니다. 전략적 프로젝트 관리 및 실행 부문에서도 종사하고 있습니다. 일본 메이지 대학에서 상업 문학사를 취득하였습니다.

Srivats Hariharan

Srivats Hariharan

관리자, Olympus 싱가포르의 제품 및 응용

안녕하세요! Srivats Hariharan 또는 Hari라고 합니다. Olympus 싱가포르의 공초점, 다광자 및 초고해상도 현미경의 제품 관리자입니다. 싱가포르의 난양기술대학에서 기계공학 이학사를 취득한 후 생물의학 연구소 및 A*STAR 현미경 핵심 시설에서 근무하면서 공초점 및 라이브 셀 이미징 기술을 비롯하여 단일 분자 초고해상도 및 단면광 현미경 설치에 대해 연구원들을 지원하였습니다.  2011년에 제품 관리자 겸 동남 아시아 및 대만의 연구 고객 및 비즈니스 파트너 지원 담당으로 Olympus 싱가포르의 생명과학팀에 입사하였습니다.

Stefan Marawske

Stefan Marawske

영업 수석 전문가, 고급 생명과학 현미경

안녕하세요, 초고해상도 현미경 전문가인 Stefan Marawske입니다. 물리화학 분야의 박사 과정에서 편재화 기반 초고해상도 및 입자 추적을 위한 홈메이드 현미경을 만들었습니다. 이러한 방법이 그 유명한 Abbe 한계를 극복하고 이전에 식별할 수 없었던 구조를 해상할 수 있었다는 점에 매료되었습니다.

Olympus에서 7년 이상을 근무하였으며 TIRF 및 회전 디스크 같은 고급 이미징 시스템을 주로 담당하였습니다. 여러 다양한 장치들이 다양한 용도로 결합될 수 있음에 따라 이들 시스템은 일반적으로 높은 수준의 유연성을 가집니다. 전용 구조를 정의하는 데 도움이 필요하신 분은 언제라도 연락하십시오.

Takeo Ogama

Takeo Ogama

제품 및 전략 수석 기획자 겸 제품 관리자

Olympus의 현미경 카메라의 제품 및 전략 수석 기획자 겸 제품 관리자인 Takeo Ogama입니다. 카메라를 비롯한 다양한 제품의 연구 및 개발부에서 8년, 제품 기획, 마케팅 및 관리 부문에서 8년을 각각 종사하였습니다. Olympus에 입사하기 전에 일본 오사카 대학에서 중성미자 물리학 석사를 취득하였습니다.

Wei Juan Wong

Wei Juan Wong

Olympus 싱가포르의 제품 수석 전문가

안녕하세요! 임상 및 연구 시장 제품의 제품 전문가인 Wei Juan Wong입니다.  물리학 이학사를 소지하고 있으며 생물물리학 연구실험실 및 현미경 핵심 시설에서 근무하였습니다. 2018년에 제품 전문가로 Olympus 싱가포르 생명과학팀에 입사하였으며 현재 고객을 위한 응용 지원의 제공 및 동남 아시아 지역의 대리점을 위한 교육 프로그램을 담당하고 있습니다.

Klaus Willeke

Klaus Willeke

Product Marketing Manager

Hello, I’m Klaus Willeke, Product Marketing Manager at Olympus Life Science Division and I’m responsible for our new X Line objectives. During my geology studies, the polarization microscope was an essential tool for determining and researching mineral compositions and structures. I was always fascinated by how colorful the world of minerals appears through a polarization microscope and how much you can discover with the help of light and good optics.

I’ve been working for Olympus for more than 22 years where I was 17 years a sales representative for industrial and life science microcopy in Germany and after that in European Product Marketing in the Scientific Solutions Division of Olympus, responsible for upright clinical and research microscopes and X Line lenses. 

Dr. Hrishikesh Pai

Dr. Hrishikesh Pai

Medical Director, Bloom IVF Group

Dr Hrishikesh Pai did his Fellowship in Reproductive Biology from the Royal Women’s Hospital, Melbourne Australia in 1989. He did his Masters in Clinical Embryology and Andrology from the Jones Institute, Eastern Virginia Medical School, USA in 2006. He has won 45 plus awards including the Honorary FRCOG from the Royal College of Obstetricians & Gynecologists, United Kingdom in 2019. Dr Pai has been the Past President of the Indian Society for Assisted Reproduction (ISAR) and is the present Director of Corporate Affairs for International Federation of Fertility Societies (IFFS). Dr Pai is the President Elect of the Federation of Obstetric and Gynecological Societies of India (FOGSI) with a membership strength of 37,000 members. It is the second largest medical body of gynecologists in the world, only second to the ACOG.

Hiroya Ishihara

Hiroya Ishihara

Applications Scientist

Mr. Hiroya Ishihara is an Application Scientist at Olympus. He was studying the epigenetic factors involved in plant regeneration using omics and microscopy in Tokyo University of Science. Confocal and two-photon microscopy were his trusted partner at that time. Therefore, he joined Olympus to make life science more exciting with microscopes. Currently, he is working on a wide range of projects from basic research to product/sales strategy.

Dr. Gowri Balachander

Dr. Gowri Balachander

Research Fellow, Translation Mechanobiology lab, National University of Singapore

Dr. Gowri Balachander is a Research Fellow at the Yong Loo Lin School of Medicine, National University of Singapore. She completed her PhD at the prestigious Indian Institute of Science, Bangalore, India where she worked on engineering 3D organotypic models for the study of breast cancer metastasis. At NUS, she currently works on morphogenetic models for human liver development and regeneration.

Joanna Hawryluk

Joanna Hawryluk

Product Manager

Joanna Hawryluk is a product manager for Olympus Corporation of the Americas located in Waltham, MA. She has been with Olympus since 2017 within the Marketing department specializing in our 3D cell analysis software, lightsheet microscopy, electrophysiology, and our cell culture monitoring system. Dr. Hawryluk received her doctorate degree in Physiology and Neurobiology in 2016 from the University of Connecticut.

Benjamin Compans, Ph.D.

Benjamin Compans, Ph.D.

Marie Curie Research Fellow

Benjamin received his Ph.D. from the University of Bordeaux. During his Ph.D., in the group of Dr. Choquet at the Interdisciplinary Institute for Neuroscience, he studied the nanoscale organization of glutamate receptors at excitatory synapse and its importance for synaptic plasticity. In 2018, he joined the lab of Professor Burrone at King’s College London for his postdoc where he investigates the molecular organization of inhibitory synapses and its role in regulating neuronal firing, a project for which he obtained a Marie Sklodowska-Curie Action postdoctoral fellowship.

Lin Guo

Lin Guo

Manager, Product and Application Life Science Department Scientific Solutions Business Division

Lin got his PhD back in 2010 in National University of Singapore working on biophysical research. From 2009 he joined Olympus as Technical and Application specialist taking care of laser based high end imaging system. In 2012, Lin decided to move back to China and taking a position with one of the leading scientific camera manufacturers Photometrics. There, he started as application specialist, later become regional sales manager and finally scientific sales manager for Asia Pacific. In 2021, Lin moved back to Singapore, joining Olympus Singapore as the manager for product and application. Lin has a long experience of various techniques on scientific digital imaging including various camera technologies.

Angela Vasaturo

Angela Vasaturo

Senior Field Application Scientist, Ultivue, Inc.

Hello, my name is Angela Vasaturo, the senior field application scientist at Ultivue. My passion for micro-biology and live-cell imaging began during my post-doc, where I was involved in the early development of multiplex IHC in Europe.
I built my expertise through extensive involvement in post-doc research focused on tumor immunology at the NCMLS in Nijmegen, NL, as well as during my position as Senior Researcher in Dr. Jerome Galon’s Laboratory of Integrative Cancer Immunology at the Cordeliers Research Center.

Shogo Usui

Shogo Usui

Product Leader

My name is Shogo Usui and I'm product leader of CM20 at Olympus Corporation.

For over ten years, I have been an electrical engineer in the life science R&D team in Olympus Tokyo. I hold a Master’s degree in applied physics from the University of Electrical and Communication from Tokyo, Japan.

Dr. Anne Beghin

Dr. Anne Beghin

Assistant Professor, Research Mechanobiology Institute

Dr. Anne Beghin is a multidisciplinary scientist with fifteen years of extensive research experience across academia and industry. She obtained her PhD in oncology in 2007 at the University Claude Bernard in Lyon (France). She then moved to optical microscopy at the Université de Lyon, where she established the microscopy platform and developed live cell imaging solutions and image analysis services for 4 years.

In 2011, she was recruited by a biotechnology company based in Bordeaux, where she spent 3 years in charge of a tissue analysis service: from biologic samples (whole tissue sections and Tissue Micro Arrays) to image acquisition and analysis with database establishment. She has been part of the Interdisciplinary Institute of NeuroScience IINS for 3 years where she successfully developed a new platform linking the High Content Screening (HCS) approach with super resolution microscopy such as Single Molecule Light Microscopy (HCS-SMLM), a collaboration with pharmaceutical company, Sanofi. Subsequently, she moved to the MechanoBiology Institute (MBI) in Singapore to study organoids using advanced imaging and HCS. This work has resulted in a patent and publications are on-going.

Dr. Xiaotong Cui

Dr. Xiaotong Cui

Field Application Specialist

Dr. Xiaotong Cui received his B.S. and M.Sc. from the University of Leicester, UK. He went on to receive aPh.D. from the Institute of Life Science, Kyoto University in 2018, where he worked under the direction of Prof. Osamu Takeuchi. From 2018-2020, he was a program-specific researcher in Shenzhen Digital Life Institute and ASHBi, Japan. Dr. Xiaotong has a solid background in molecular cell biology, immunology and he participated in one special program for Key Basic Research of Ministry of Science and Technology, China. Now, he serves as a Field Application Specialist in Bio-Techne China.

Dr. Kasmira Wilson

Dr. Kasmira Wilson

Researcher

Dr. Kasmira Wilson is a general surgeon and CSSANZ trainee, having previously completed a BSc(Hons) and MBBS. She is currently undertaking a PhD through the University of Melbourne at Peter MacCallum cancer centre which focuses on translational research in rectal cancer. Her research utilises tumouroid models to explore anti-tumour immunity in rectal cancer in a novel functional cytotoxic assay.

Dr. Dan Zhu

Dr. Dan Zhu

Professor

Dr. Dan Zhu is a professor of Huazhong University of Science & Technology, and Vice-Director of Wuhan National Laboratory for Optoelectronics. Her research interests mainly focus on tissue optical clearing imaging and applications. She is the pioneer in the field of in vivo tissue optical clearing, and also developed fast, label-compatible in vitro optical clearing methods. She has authored more than 150 papers including Science Advances, Nature Communications, et al. She is also Fellow of SPIE, and Secretary General & Vice President of Biomedical Photonics Committee of Chinese Optical Society. She serves for journals as editorial member or guest editor, including Biomedical Optics Express, Journal of Biomedical Optics, Scientific Reports, Journal of Innovative Optical Health Sciences, Frontier of Optoelectronics et al.

Dr. Graham Wright

Dr. Graham Wright

Acting Director

Dr. Graham Wright holds an interdisciplinary PhD in cell biology and physics from The University of Edinburgh and an MBA from the Warwick Business School at The University of Warwick. He is the Acting Director of A*STAR’s Research Support Centre (RSC) and the Director of the A*STAR Microscopy Platform (AMP). RSC offers everything from on-demand access to sophisticated scientific instruments and services, located within varied Technology Platforms, to a research consumables webstore, playing a crucial role in powering biomedical innovation in Singapore.

Dr. Graham has extensive experience, and a strong publication record, in applying advanced light microscopy to a wide range of biomedical research projects. Outside the laboratory, he is committed to science outreach and has featured as a judge on MediaCorp’s National Science Challenge TV show, presented a TEDx talk, had microscopy images displayed on the big screen in Times Square, New York and exhibited work at the National Museum of Singapore.

Mr. Srivats Hariharan

Mr. Srivats Hariharan

Manager, Applications and Marketing

Mr. Srivats Hariharan is an Applications & Marketing Manager in Olympus life science team in the Asia Pacific region. He holds a bachelor’s degree in Mechanical Engineering from Nanyang Technological University, Singapore and has experience working in biomedical research labs and A*STAR Microscopy Core Facility where he supported researchers on confocal and live cell imaging technologies and help setup single molecule super-resolution and light sheet microscopes. He joined the life-science team of Olympus Singapore in 2011 as Product Manager and in-charge of supporting research customers and business partners in South-East Asia and Taiwan.

Ms. Gency Gunasingh

Ms. Gency Gunasingh

Research Assistant

Ms. Gency Gunasingh completed her Master of biotechnology degree from University of Queensland in 2012 and did her Masters project under Dr. Andrew Prowse and Prof. Peter Gray at Australian Institute for Bioengineering and Nanotechnology. Her primary area of research was large scale generation of cardiac progenitors from embryonic stem cells in 3D. She then worked under Prof. Brian Gabrielli at UQ Diamantina institute on developing 3D tumour spheres in melanoma for in vitro drug testing. She currently works for Prof. Nikolas Haass at UQDI on understanding tumour heterogeneity and tumour architecture in melanoma spheroids.

Dr. Dong Gao

Dr. Dong Gao

Principal Investigator

Dr. Dong Gao is the Principal Investigator of Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. His research interests mainly focus on t prostate adult stem cell and the establishment of patients-derived cancer organoid biobank. He has authored more than 40 papers including Cell, Nature Genetics, Cell Stem Cell et al.

Dr. Yu Weimiao

Dr. Yu Weimiao

Head of Computational & Molecular Pathology Lab (CMPL) Agency of Science

Dr. Yu Weimiao obtained his Ph.D. from the National University of Singapore (NUS) in 2007, majoring in image processing and machine vision. He joined the Agency of Science, Technology and Research (A*STAR) in 2007. He is currently heading Computational Digital Pathology Lab (CMPL) in BII to deepen and extend the R&D with clinical and industrial partners. He is also the joint PI in IMCB leading the Computational & Molecular Pathology Lab (CMPL). His research interests are Computational Biomedical Image Analysis and Quantitative Imaging Informatics. He applied 3D image analysis solution to segment and tracking the cells in 3D to understand the developmental problem and collective cell migration mechanisms. His work was published in Nature Communication, Current biology, Nature Cell Biology, etc. To enhance the applications in clinical diagnosis/prognosis, he co-founded a biotech company, known as A!maginostic Pte. Ltd. He established a world-class joint platform for the immunodiagnosis at the tissue level. The platform allows the researchers, clinicians, and pharma to profile the patient immune signature for diagnosis, prognosis, and drug response study.

Dr. Motoki Takagi

Dr. Motoki Takagi

Professor

Dr. Motoki Takagi received PhD from Graduate School of Agriculture and Life Sciences, the University of Tokyo in 2001. Then he continued his research as a postdoctoral fellow at Institute of Molecular and Cellular Biosciences, the University of Tokyo. He was engaged in the research of nucleic acid drugs at Genencare Research Institute, Co. Ltd. since 2002. Since 2006, he conducted drug discovery research at Biological Systems Control Team, Biomedicinal Information Research Center, Japan Biological Informatics Consortium. Since 2012, he has been researching chemical biology as an associate professor at Fukushima Medical University and became a professor in 2014.

Dr. Ningbo Wu

Dr. Ningbo Wu

Associate Professor

Dr. Ningbo Wu is an Associate Professor at Shanghai Institute of immunology, Shanghai Jiaotong University School of Medicine. His research interests mainly focus on the function of intestinal stromal cells in intestinal homeostasis and related work was published in Nature and Science CHINA Life Sciences, et al.

Dr. Nuno Costa-Borges

Dr. Nuno Costa-Borges

Embryologist and Co-founder of Embryotools

Nuno Costa-Borges is devoted to offering quality control (QC) tests, training, and consulting services to the IVF community worldwide. With over 18 years’ experience, Nuno completed a PhD focused on improving animal cloning efficiency before joining IVI Barcelona as a clinical embryologist. Now, as cofounder and scientific director of Embryotools, Nuno is committed to developing new IVF techniques, which have led to the world’s first babies via maternal spindle transfer for infertility and to the development of the first robotic system for intracytoplasmic sperm injection successfully tested clinically.

Akira Saito

Akira Saito

Assistant Manager, Marketing and Applications

Akira studied veterinary medicine at Tokyo University of Agriculture and Technology, Japan and graduated in 2007. Shortly after, he joined Olympus as application specialist responsible for in vivo imaging systems, high-content analysis systems, and laser confocal systems to support customers in Japan. In 2013, he took over sales promotion for all Olympus life science products. From 2018, he moved to Singapore and joined to support the marketing and application support for the APAC market.

Bob McLean

Bob McLean

Regents’ Professor

Bob McLean has over 30 years’ experience as a microbiologist, during which time he and his lab have done a number of studies on surface-adherent microorganisms (biofilms). In 1998, he and his colleagues had an experiment on the space shuttle with John Glenn, in which they were one of the first research groups to show that biofilms could form in microgravity. Since that discovery, there have been a number of biofilm issues, notably instances of fouling in the water recovery system in the International Space Station and other spacecraft. In 2015, Bob, along with collaborators at Arizona State and the Johnson Space Center, received a NASA grant to study biofilm formation during spaceflight. Confocal and other types of microscopy have been instrumental in these investigations.

Jesse Chao

Jesse Chao

Scientist

Jesse completed his Ph.D. at the University of British Columbia (UBC) in cell biology and genomics. He then continued his training at the University of California, San Diego. After, he switched his focus to developing machine learning approaches for assessing the physiological impacts of genetic variants associated with hereditary cancer at UBC. During this time, he started to develop deep learning approaches to automated phenotypic profiling based on high-content imaging data.

James Lopez

James Lopez

National Applications Manager

James Lopez received his Ph.D. in biomedical sciences from the University of Chicago in 2010. With nearly a decade of experience in calcium imaging, FRET, live cell imaging, and intravital imaging, James joined Olympus as a confocal and multiphoton sales representative. He later transitioned to the Olympus Life Science Applications Group, supporting confocal and multiphoton systems. Now he manages the Life Science Applications Group in the US, Canada, and Latin America markets.

Yosuke Yoneyama

Yosuke Yoneyama

Assistant Professor

Yosuke Yoneyama obtained his Ph.D. from The University of Tokyo in Japan, where he continued his post-doctoral work on insulin/insulin-like growth factor signaling with a focus on spatiotemporal control of the intracellular signaling system in the laboratory of Dr. Shin-Ichiro Takahashi. He then joined the laboratory of Dr. Takanori Takebe at Tokyo Medical and Dental University in Japan as an assistant professor. He now focuses on human organoids, in particular liver organoids, that are derived from stem cells, including induced pluripotent stem cells (iPSCs), to reconstitute multiple lineages of liver cells both for human development and modeling diseases such as non-alcoholic steatohepatitis.

Ewa Goldys

Ewa Goldys

Deputy Director

Professor Ewa M. Goldys is Deputy Director of the Australian Research Council Centre of Excellence in Nanoscale Biophotonics (cnbp.org.au) and Professor at the Graduate School of Biomedical Engineering, the University of New South Wales, Sydney, Australia.  She is Fellow of SPIE, OSA, the Australian Academy of Technological Science and Engineering (ATSE), and winner of the 2016 Australian Museum Eureka Prize for ‘Innovative Use of Technology.’ She has ongoing involvement with SPIE BIOS, the world's largest international biomedical optics meeting and SPIE's Photonics West where she serves as Track Chair in Nanobiophotonics.

Her research spans the areas of biomedical science, bioimaging, biosensing, and materials science. She developed novel approaches to biochemical and medical sensing and deployable medical diagnostics. Current projects focus on cancer nanotechnology and non-invasive high-content imaging of colors and patterns in cells and tissues.

Laura Vittadello

Laura Vittadello

Department of Physics and Center of Cellular Nanoanalytics

Dr. Laura Vittadello is working as a post-doc in the physics department of the Osnabrück University in the ultrafast physics research group. Her research focus is on the fundamental study and application of a new type of marker, harmonic nanoparticles, that are specially designed for biological applications that involve nonlinear microscopy.

Francesco Cardarelli

Francesco Cardarelli

Associate Professor in Applied Physics

After receiving his M.Sc. in Biological Sciences from the University of Pisa in Oct 2003 and his Diploma in Biological Sciences in the same year (both with honors) from SNS, Francesco Cardarelli worked at the NEST Laboratory of SNS as a Ph.D. student in Molecular Biophysics under the supervision of Prof. Fabio Beltram. He started his interdisciplinary research at the crossroads between cell biology and physics, using advanced fluorescence microscopy methods to study the intracellular transport properties of virus-derived peptide sequences. After graduating, he became a Post-Doctoral Fellow at the Laboratory for Fluorescence Dynamics, University of California at Irvine, under the supervision of Prof. Enrico Gratton, where he coordinated the research activity for the development of new spatial variants of fluorescence correlation spectroscopy to detect barriers to molecular diffusion/flow in live cells. In Dec 2010 he was hired by the CNI@NEST (IIT) as a Post-Doctoral Fellow. Back in Italy, he started working to develop new fluorescence-based imaging and analysis methods to study single molecules in complex biological systems with high spatiotemporal resolution. This research was boosted by a number of funded grants (and established collaborations) and by an independent scientific position, first at CNR as a Researcher, then at SNS as Professor in Applied Physics.

The focus of his research is on the development of new optical microscopy techniques to increase the amount of quantitative information that can be extracted from investigations on living matter. For instance, in recent years, he and his team introduced a number of new spatiotemporal fluctuation-analysis tools (iMSD, iRICS, nD-pCF, diffusion tensor analysis, etc.) to extract structural and dynamic properties of biological objects, from molecules to entire sub-cellular structures, in their complex natural environment. Such a toolbox is becoming a new paradigm for biophysical investigations at the nanoscale, as featured in the “New and Notable” section of Biophysical Journal (2016 Aug 23; 111(4): 677–678). In 2014, together with his Team, they demonstrated the occurrence of short-range protein Brownian motion in the cell cytoplasm, being among the first to challenge the current view of the structural organization of the crowded intracellular environment. Finally, by combining this toolbox with feedback-based orbital tracking, they demonstrated that even the nanoscopic and dynamic environment of intracellular organelles can be quantitatively probed.

Sandrine Roy

Sandrine Roy

Business Development Manager

Dr. Roy completed a double-major in Biochemistry and Microbiology followed by the completion of a Doctor of Philosophy in 2002 in the field of Molecular Biology/Cell Biology at the University of Queensland Australia. She travelled abroad to undertake a post-doctoral position at Washington University in St Louis, USA. She then returned to Australia to continue her post-doctoral studies.

With her extensive microscopy experience, she was appointed as the University of Queensland Diamantina Institute Microscopy Facility Manager in 2009 and later as manager of microscopy services at the Translational Research Institute in Brisbane until 2019.

She is now Business Development Manager at Olympus Australia, where her experience and knowledge is used to support customers both in Australia and New Zealand.

Seungil Kim

Seungil Kim

Staff Scientist

Seungil Kim, Ph.D., is a Staff Scientist and Microscopy Team Manager at the Lawrence J. Ellison Institute for Transformative Medicine at USC. Dr. Kim completed his B.S. and M.S. degrees in South Korea. He then moved to Washington University and received a doctoral degree in Developmental Biology. He carried out his postdoctoral research in the department of Cell and Tissue Biology at UCSF. Seungil has over 10 years of experience working with various in vitro/in vivo models and advanced cellular imaging techniques. His current research focus is to understand the contributions of the tumor microenvironment to drug response, using patient-derived 3D organoids as a model system. Moreover, he is developing high-throughput automated imaging methods to screen novel drug compounds in colorectal cancer.

Alfonso J. Schmidt

Alfonso J. Schmidt

Senior Staff Scientist

Alfonso has a decade of experience working in a shared resource lab (SRL) with a vast knowledge in histology, fluorescent microscopy, and image analysis. His work has been focused in maximizing the capabilities of the equipment available and in creating technical protocols and training modules for the scientific community. Currently, Alfonso oversees the Histology and Bioimaging Facility as part of the Hugh Green Cytometry Centre (HGCC) at the Malaghan Institute of Medical Research in Wellington, New Zealand.

Tong Wu

Tong Wu

Business Development Manager

Tong Wu joined Olympus in 2012 after completing her Ph.D. in China (State Key Laboratory of Fine Chemicals, DLUT). Now, Tong is a business development manager, supporting high-end microscopes in Olympus Australia. With a research background in fluorescent dyes for bio-imaging and bio-labelling, Tong Wu is enthusiastic to engage with customers’ research applications.

Ruben Portugues

Ruben Portugues

Institute of Neuroscience

Prof. Portugues is a neurobiologist studying sensorimotor control. His research group uses behavior, modeling, optogenetics, in vivo electrophysiology, and whole brain functional calcium imaging to dissect learning, memory, and action selection in the larval zebrafish.

Prof. Portugues studied mathematics and did his Ph.D. in theoretical physics at Trinity College in the University of Cambridge. After a short postdoctoral fellowship in physics at Centro de Estudios Cientificos in Valdivia, Chile, he joined Professor Florian Engert’s laboratory at Harvard University and switched research interests to neuroscience. In 2014 he was appointed Max Planck Research Group Leader at the Max Planck Institute of Neurobiology in Martinsried. Since 2020 Prof. Portugues is an assistant professor at the TUM.

Dr. Thomas Bauer-Jazayeri

Dr. Thomas Bauer-Jazayeri

Director of Marketing and Sales evorion biotechnologies

Atsuya Toda

Atsuya Toda

Assistant Manager, Life Science Research Solutions, Global Marketing Evident

Atsuya Toda is an assistant manager for Global Life Science Marketing at Evident. He has more than fifteen years’ experience in life science microscopy sales, sales planning, and marketing in Japan. In 2021, he moved to the Global Life Science Marketing team where he is the marketing representative for the APEXVIEW APX100 all-in-one microscope. He holds a Bachelor of Economics degree from Doshisha University, Japan.

Dr. Laura Lleras Forero

Dr. Laura Lleras Forero

Product Marketing Manager

Laura Lleras Forero is the product marketing manager for cell culture products at Evident. She completed her PhD at King’s College London and undertook postdocs in Utrecht, Berlin, and Münster. She has been with Evident since 2021, supporting cell culture microscopy solutions, the SLIDEVIEW™ VS200 research slide scanner, and the APEXVIEW™ APX100 all-in-one microscope for Europe, the Middle East, and Africa (EMEA).

Ines Hartmann

Ines Hartmann


Ines Hartmann is an application specialist for cell handling at the Eppendorf headquarters in Hamburg, Germany. She joined the company in 2008 and has worked on several topics in cell handling, liquid handling, and consumables. She obtained her diploma degree in biology at the Humboldt University of Berlin, Germany and has expertise in various laboratory techniques.

Amin El-Heliebi

Amin El-Heliebi


Featured Speaker Amin El-Heliebi (Professor) Professor Amin El-Heliebi was educated in Graz, Stockholm and Buenos Aires and was appointed Research Professor 2021 at the Medical University of Graz, Austria. His research focus lies in molecular biomarkers, cancer research, liquid biopsy, tumor biology, and spatial transcriptomics. His overarching research question deals with understanding tumor dissemination. His research group investigates liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Their overall aim is to track and trace liquid biopsies back to the originating tumor mass and identify the mechanisms involved in spreading of metastatic disease.

전문가에게 문의하기

Investigating Tumor Dissemination by Spatial Transcriptomics

ln this webinar, I will introduce our spatial transcriptomics approach to investigate predictive biomarkers in colon cancer and disease relapse. I will show an imaging-based in situ sequencing approach that enables the visualization and quantification of greater than 200 different RNA transcripts directly on formalin fixed and paraffin embedded cancer tissue.

Transforming Precision Imaging: Meet the FLUOVIEW™ FV4000 Confocal Microscope

Experts
Bülent Peker
제품 마케팅 수석 관리자
Evident
Join us on a transformative journey with the FLUOVIEW FV4000 confocal laser scanning microscope. This innovative platform introduces our breakthrough SilVIR™ detector technology that makes it easier than ever to acquire precise, reproducible data.

Introduction to the APEXVIEW™ APX100 Digital Imaging System

Experts
Dr. Laura Lleras Forero
Product Marketing Manager
Evident
Join our webinar for an exclusive virtual demo of the APEXVIEW APX100 digital imaging system.

How Polarized Light Can Assist Embryologists in Clinical Routines

Experts
Dr. Nuno Costa-Borges
Embryologist and Co-founder of Embryotools
In this webinar, we’ll review how polarized light can assist embryologists in different research and clinical applications.

Unveiling Nanoscopic Realms: A Journey into Super-Resolution Microscopy

Join us in this webinar as we unfurl the potential of Abbelight's super-resolution microscopy.

Multiplexing and Deep Tissue Imaging with NIR Confocal Laser Scanning Microscopy (Encore Edition)

Get another chance to learn about fluorescence multiplexing and deep tissue imaging using near-infrared (NIR) laser light in this replay of our webinar with confocal specialists Bülent Peker and Rebecca Bonfig.

Good Cell Culture Practice—How to Improve the Reproducibility of Your Experiments

Experts
Dr. Laura Lleras Forero
Product Marketing Manager
Evident
Ines Hartmann
Eppendorf SE
The life science reproducibility crisis is especially frequent in cell culture studies. In this webinar we will focus on the factors that affect reproducibility in cell culture experiments and on how to control and minimize them. The webinar will take place on June 29 at 10 a.m. EDT/4 p.m. CEST.

EVIDENT Organoid Conference 2023 - Looking Deeper, Capturing Complexities

Join us at this year's virtual Evident Organoid Conference—Looking Deeper, Capturing Complexities on February 8, 2023. Hear from industry leaders on the latest advances and applications in the field of organoids and organ-on-a-chip research. Cell biologists, microscopists, and image analysis experts will share their expertise and answer your questions.
FluidFM: 핵 내 직접 전달을 통한 새로운 CRISPR 유전자 편집 방식

FluidFM: 핵 내 직접 전달을 통한 새로운 CRISPR 유전자 편집 방식

Experts
이 웨비나에서는 Cytosurge의 Paul Monnier가 유전자 편집의 가장 큰 과제 중 하나, 즉 유전 물질을 핵으로 전달하는 어려운 과제를 해결하는 방법을 보여드립니다.Paul은 핵막을 부드럽게 관통하여 시약을 핵으로 직접 전달할 수 있는 FluidFM 나노 주사기에 대해 이야기하겠습니다.

Exceptional Imaging Made Easy: Meet the APEXVIEW™ APX100 All-in-One Microscope

Experts
Atsuya Toda
Assistant Manager, Life Science Research Solutions, Global Marketing Evident
Evident
Akira Saito
Assistant Manager, Marketing and Applications
Olympus Singapore
Join this webinar to learn more about the features and capabilities of the APX100 microscope and see a live demonstration of the system.
최신 슬라이드 스캐닝: 고정 샘플에서의 단세포 표현형

최신 슬라이드 스캐닝: 고정 샘플에서의 단세포 표현형

Experts
Alec De Grand
제품 관리자
Flavio Giacobone
제품 마케팅 관리자
4월에는 지구의 날과 2021 올해의 이미지상 수상자를 기념하였으며, 여러분께서는 다양한 이미지를 감상하셨습니다. 그중 최고 인기 이미지를 여기에서 확인하세요.

Technology Evaluation: Deciphering Cell-Cell Interactions in a 3D Microenvironment at a Single-Cell Resolution

Experts
Dr. Thomas Bauer-Jazayeri
Director of Marketing and Sales evorion biotechnologies
evorion biotechnologies
Join Thomas to learn how easily you can implement evorion’s advanced microfluidics-based CellCity System to unravel the cellular and molecular mechanisms of cell-to-cell interactions in a 3D microenvironment at a single-cell resolution. Discover Evident and evorion’s joint workflow solution that enables you to find your highly characterized specific cells of interest for high-resolution live-cell imaging using our IXplore™ microscope systems in a user-friendly manner.
3D 분석: 지능형 소프트웨어, 통찰력 있는 분석

3D 분석: 지능형 소프트웨어, 통찰력 있는 분석

Experts
Daniel Bemmerl
지역 담당 관리자, 고급 현미경 시스템
Shohei Imamura
Strategic Project Manager, Regenerative Medicine and Drug Discovery Solutions
3D 분석: 지능형 소프트웨어, 통찰력 있는 분석 이 웨비나에서 스페로이드 및 마이크로플레이트 기반 분석에 대한 최적의 통계 데이터를 얻는 방법에 대해 논의합니다. 이러한 데이터를 사용하면 화합물에 대한 3D 모형의 반응을 정량화하고 다양한 농도와 같은 다른 처치의 효과를 쉽게 비교할 수 있습니다.
딥러닝: 새 애플리케이션의 문을 열다

딥러닝: 새 애플리케이션의 문을 열다

Experts
Kathy Lindsley
응용 전문가, 생명과학 응용
Manoel Veiga
응용 전문가, 생명과학 연구
Olympus Soft Imaging Solutions
Manoel과 Kathy가 딥러닝의 힘을 활용하여 까다로운 이미지 분석 작업을 처리하는 방법을 설명합니다.

Olympus 바이오이미징 콘퍼런스: 새로운 차원 탐구 | 3일간의 가상 이벤트 | 2022년 3월 9~11일

Bioimaging is an essential tool used to image and analyze cells, tissues, and molecules in fields such as drug discovery, diagnostics, life science, and clinical research. Rapid advances in imaging technology have enabled researchers to visualize and quantify specimens in ways that were, until recently, impossible. With the advent of technologies such as super-resolution and AI-assisted imaging, researchers can now clearly observe their specimens on the nanometer scale and have access to stress-free, accurate data analysis. The objective of this virtual conference is to explore and understand recent innovations in light microscopy bioimaging technologies. Over the 3-day event, our expert speakers will discuss topics such as super-resolution microscopy, F-techniques including FRAP and FRET, and novel probes.
라이브 셀 초고해상도 이미징: 작은 대상을 큰 그림으로

라이브 셀 초고해상도 이미징: 작은 대상을 큰 그림으로

Experts
Chunsong Yan
사업 개발 관리자, 생명과학
Olympus Australia & New Zealand
Lauren Alvarenga
제품 관리자, 생명과학 현미경
Stefan Marawske
영업 수석 전문가, 고급 생명과학 현미경
Olympus Europa
이 웨비나에서 Olympus 이미징 전문가 Stefan, Lauren, Chunsong은 초고해상도 이미지를 더 간편하게 생성하는 방법에 대해 이야기합니다.

FV3000 Red Near-Infrared (NIR) Solutions for Confocal Microscopy | 2 p.m.

Experts
James Lopez
National Applications Manager
Olympus America Inc.
In this webinar, Dr. Lopez presents the latest advances in near-infrared (NIR) confocal imaging with the Olympus FV3000 Red confocal laser scanning microscope. NIR imaging provides new opportunities for deeper imaging, more complex multiplexing, and gentler live cell imaging. Tune in to learn more about our FV3000 Red system’s unique technology providing novel NIR imaging capabilities.

FV3000 Red Near-Infrared (NIR) Solutions for Confocal Microscopy | 10 a.m.

Experts
James Lopez
National Applications Manager
Olympus America Inc.
In this webinar, Dr. Lopez presents the latest advances in near-infrared (NIR) confocal imaging with the Olympus FV3000 Red confocal laser scanning microscope. NIR imaging provides new opportunities for deeper imaging, more complex multiplexing, and gentler live cell imaging. Tune in to learn more about our FV3000 Red system’s unique technology providing novel NIR imaging capabilities.

Olympus Organoid Conference 2021

During the Olympus Organoid Conference, cell biologists, microscopists, and image analysis experts shared their insights and answered questions on the latest developments in organoid technologies.

현미경 대물렌즈 - 마법이 펼쳐지는 곳

Experts
Klaus Willeke
Product Marketing Manager
Lauren Alvarenga
제품 관리자, 생명과학 현미경
Lauren과 Klaus는 이 웨비나를 통해 현미경과 같은 복잡한 시스템에서 우수한 광학이 중요한 이유를 강조하고자 합니다. 이들은 최종 이미지 품질에 중요한 여러 가지 측면에 대해 논의할 것입니다.
High-Content 스크리닝: 간편해진 맞춤형 분석

High-Content 스크리닝: 간편해진 맞춤형 분석

Experts
Manoel Veiga
응용 전문가, 생명과학 연구
Olympus Soft Imaging Solutions
Shohei Imamura
Strategic Project Manager, Regenerative Medicine and Drug Discovery Solutions
이 웹 세미나에서는 당사의 딥러닝 및 High-Content 스크리닝 전문가인 Manoel과 Shohei가 scanR 시스템의 분석기를 소개합니다. scanR 시스템은 유세포 분석(flow cytometry)법에서 영감을 받은 고유한 샘플 탐색 방법과 분석을 사용하는 Olympus의 전용 High-Content 스크리닝 플랫폼입니다.
나노미터 크기의 여러 세포 내 구조를 3D로 이미징하기

나노미터 크기의 여러 세포 내 구조를 3D로 이미징하기

Experts
Dr. Nicolas Bourg
Abbelight의 기술담당 최고 책임자 겸 공동 창업자
Abbelight의 공동 창업자인 Nicolas Bourg 박사가 샘플의 안정적이고 뚜렷한 고품질 단분자 이미지를 15nm 해상도에서 얼마나 쉽고 빠르게 3D로 획득할 수 있는지 이야기합니다.

환자 유래 오가노이드 및 스페로이드의 3차원 High-Throughput 이미지 분석

Experts
Hiroya Ishihara
Applications Scientist
Olympus Technologies Asia, Olympus Corporation
오가노이드 및 스페로이드는 생체 조건에서 더 확실하게 증식하며, 이미징 기반 분석은 세포의 특정 반응을 높은 분해능으로 모니터링할 수 있습니다. 그래서 당사는 환자 유래 암의 오가노이드 및 스페로이드를 사용하여 이미징 기반 3차원 분석 및 약물 평가 방법을 개발 중입니다.
Olympus 디스커버리 서밋

Olympus 디스커버리 서밋: 이미징 향상 | 2021년 10월 26일~27일

During two full days of virtual presentations, join your peers as they discuss the ways they are using imaging techniques to advance their research. You can also attend live product demos and tech talks from Olympus experts.

디지털 이미지 처리 2부: 고급 이미지 처리 필터

Experts
Heiko Gäthje
수석 트레이너, 교육 아카데미
Olympus Europa
이번 주제에 관한 첫 번째 웹 세미나에서는 광학 현미경으로 촬영한 이미지가 샘플을 완벽하게 반영하지는 않는다고 배웠습니다. 언제나 오류가 생길 소지가 있고 오류의 최소화만이 가능하기 때문에, 이미징 실험의 원본 데이터는 최종 이미지 분석 이전에 어느 정도의 디지털 이미지 처리가 필요하기 마련입니다.

Whole-Brain Functional Calcium Imaging Using Light Sheet Microscopy

Experts
Ruben Portugues
Institute of Neuroscience
Technical University of Munich
Light sheet microscopy is a powerful technique to perform fast volumetric imaging. I will talk about how we use it to investigate how the brain of a small vertebrate, the larval zebrafish, works. In our laboratory at the Technical University of Munich, we are interested in how the brain processes external sensory stimuli and uses internal states and past experiences to select appropriate behavior. In order to do this, we image the activity of almost all 100,000 neurons in the brain of larval zebrafish while we present the animals with stimuli and monitor their behavior. I will also discuss the data processing steps after acquiring these large datasets.

Product Demo: SLIDEVIEW™ VS200 Research Slide Scanner

Experts
Wei Juan Wong
Olympus 싱가포르의 제품 수석 전문가
Olympus Soft Imaging Solutions
In this product demo you will learn how to capture high-resolution images of your slides for quantitative analysis, enabling you to make the most of the information your slides have to offer. Easily analyze, share, and archive your data with the SLIDEVIEW VS200 digital slide scanner. Join this session and learn how to achieve more in less lead time.

Product Demo: SLIDEVIEW™ VS200 Research Slide Scanner

Experts
Chunsong Yan
사업 개발 관리자, 생명과학
Olympus Australia & New Zealand
Tong Wu
Business Development Manager
Olympus Australia New Zealand
The Olympus SLIDEVIEW VS200 research slide scanner captures high-quality virtual slide images and enables advanced quantitative image analysis. Reliable virtual slide data can be acquired with as few as two clicks. Highly versatile, the SLIDEVIEW VS200 slide scanner supports five observation methods and a wide range of sample sizes for use in various applications. Its automatic slide loader accommodates many slide glasses, helping increase experiment efficiency.

The Use of Multiplexing in Microscopy for Better Understanding the Skin Immune System in the Context of the Tissue

Experts
Alfonso J. Schmidt
Senior Staff Scientist
Malaghan Institute of Medical Research
The skin is the first line of defense and the immune system’s biggest barrier for combating pathogens. Being able to accurately characterize and identify immune cell subtypes, tissues structures, and cell distribution in the skin under steady-state conditions provides a powerful tool for understanding the first immunological strategies and biological processes that occur in the presence of pathogens. In this webinar we will review technical aspects involved in the experimental process and explore how complementary imaging technologies might assist us to better understand the immune system. The presentation is divided into three parts. First, an introduction of the Hugh Green Cytometry Centre will be presented and an overview of the histology and bioimaging technological platforms available. Second, the multiplexing methodology will be discussed, where several topics need to be considered for the design and development of a successful polychromatic panel for microscopy. Finally, preliminary results from a research project will be presented that constitutes part of a diploma program from The Royal Microscopical Society. The project focuses on the identification of immune cell types in the whole mount skin in relation to tissues structures (e.g., blood vessels and lymphatic network). It also centers on the immune cells’ distribution in the tissue as a first barrier of defense against pathogens.

Recent Advances in 3D Imaging and AI-Driven Data Analysis

Experts
Seungil Kim
Staff Scientist
Ellison Institute for Transformative Medicine at the University of Southern California
This presentation will highlight various imaging techniques for 3D models, immunostaining with tissue clearing, and live imaging of organoids as well as AI-driven data analysis for high-content imaging and screening.

Now You Have the Power to See More

Experts
Sandrine Roy
Business Development Manager
Olympus Australia & New Zealand
The Olympus VS200 digital slide scanner has been very well received since its release in March 2020. With a reliable, flexible, and customizable design, the system has been adopted by various industries including research, geology, and many others. View this session to find out more and see examples of samples scanned using this popular addition to the Olympus product range.

Metabolic Imaging in Langerhans Human Islets with MPE and FLIM

Experts
Francesco Cardarelli
Associate Professor in Applied Physics
Scuola Normale Superiore of Pisa
Capturing life (mis)regulation at the nanoscale is a crucial challenge for present and future biophysics. At this scale, the main actors are the molecules. To successfully tackle molecular behavior within living matter, optical microscopy is a valuable methodological platform: by using fluorescence as the signal, spatial and temporal details of molecular processes can be investigated quantitatively. The physiopathology of beta-cell response to glucose stimulation will be used as case study of biological/biomedical interest. The metabolic traits of beta cells will be highlighted using a straightforward combination of multiphoton microscopy, fluorescence lifetime imaging, and feedback-based orbital tracking of sub-cellular nanostructures.

Product Demo: IXplore™ SpinSR Confocal Super Resolution System

Experts
Stefan Marawske
영업 수석 전문가, 고급 생명과학 현미경
Olympus Europa
In this live demo, experience the IXplore SpinSR system, designed for fast 3D super resolution imaging and prolonged cell viability in time-lapse experiments. The microscope system offers XY resolution down to 120 nm without the need for dedicated labeling procedures. Learn how to easily integrate the IXplore SpinSR microscope system into existing experiments and sample protocols to streamline your research.

In-Vivo Tracking of Harmonic Nanoparticles by Means of a TIGER Widefield Microscope

Experts
Laura Vittadello
Department of Physics and Center of Cellular Nanoanalytics
Osnabrück University
In-vivo tracking based on harmonic nanoparticles is so far not exploited because of a lack of an appropriate tool—a widefield nonlinear optical microscope. Here, we present a new approach to overcome this challenge based on a redesign of laser space parameters.

Hyperspectral and Brightfield Imaging Combined with Deep Learning Uncover Hidden Regularities of Colors and Patterns in Cells and Tissues

Experts
Ewa Goldys
Deputy Director
Australian Research Council Centre of Excellence in Nanoscale Biophotonics
The Australian Research Council Centre of Excellence for Nanoscale Biophotonics draws on key advances of the 21st century, nanoscience, and photonics to help understand life at the molecular level. In this presentation, next-generation technologies developed in our Centre for probing, imaging, and interacting with the living systems will be discussed. These address the key challenges of ultrasensitive detection of key analytes in real complex environments and molecular complexity, and they support both novel therapies and diagnostics.

Product Demo: FLUOVIEW™ FV3000 Confocal Laser Scanning Microscope

Experts
James Lopez
National Applications Manager
Olympus America Inc.
Join James Lopez, PhD, National Applications Manager to see how the FV3000 confocal laser microscope can expand your research possibilities and help you get more data from your samples.

Product Demo: FLUOVIEW™ FV3000 Confocal Laser Scanning Microscope

Experts
Bülent Peker
제품 마케팅 수석 관리자
Evident
Join Bülent Peker, Senior Product Marketing Manager to see how the FV3000 confocal laser microscope can expand your research possibilities and help you get more data from your samples.

Evolution of Scientific Digital Imaging Technologies and their Applications

Experts
Lin Guo
Manager, Product and Application Life Science Department Scientific Solutions Business Division
Olympus Singapore
In this talk, Dr. Lin covers some critical facts about scientific digital cameras. He also discusses the evolution of these cameras, the solutions that Olympus offers, and how they are used in current advanced microscopy systems for various applications.

Deep Learning Approaches to Automated Phenotypic Profiling

Experts
Jesse Chao
Scientist
Sunnybrook Research Institute
Quantifying cellular phenotypes is the key to all cell biology studies. However, modern imaging techniques can easily generate more data than an average user can comfortably handle. In this presentation, Dr. Chao discusses two deep learning approaches, one semi-supervised and one supervised, for building image analysis pipelines. Either approach can be run on a free cloud GPU instance.

Deconvolution of 3D Image Stacks

Experts
Heiko Gäthje
수석 트레이너, 교육 아카데미
Olympus Europa
Images taken with a light microscope are never true representations of the specimen. Error sources, which have to be controlled, are sample preparation and staining protocols as well as optical aberrations and limitations of microscope and digital camera.

Confocal Microscopy and Its Use for a Spaceflight Experiment

Experts
Bob McLean
Regents’ Professor
Texas State University
Spaceflight experiments represent a rare but exciting scientific opportunity. Unlike most lab experiments, in which protocols can be quickly modified, limitations on crew time and availability of supplies are notable factors. Unanticipated changes to launch and reentry schedules are also an issue. The experimental apparatus and protocols used must be able to function in a microgravity setting, while also resisting the g-forces and vibrations during launch and landing. During this presentation, Dr. McLean will go over the experimental planning and use of confocal and electron microscopy approaches and analyses during a recent spaceflight experiment that flew on Space X-21 from 12/6/20 – 1/14/21.

Accelerating Image Analysis with TruAI™ Deep Learning Technology

Experts
Manoel Veiga
응용 전문가, 생명과학 연구
Olympus Soft Imaging Solutions
In this tech talk, through a collection of examples measured with our live cell imaging systems, high-content screening station, and whole slide scanner, you will see what TruAI technology can do for your research and get a preview of what is coming next.

A New Way of Thinking—Object Detection with Deep Learning

Experts
Akira Saito
Assistant Manager, Marketing and Applications
Olympus Singapore
In this session, we will discuss object segmentation with deep learning and its applications in life science. We will also demo Olympus deep-learning software.

ICSI - How to improve your technique

Experts
Dr. Nuno Costa-Borges
Embryologist and Co-founder of Embryotools
In this webinar, expert embryologist Nuno Costa-Borges will discuss how current success rates of intracytoplasmic sperm injection (ICSI) vary - and explore how labs can optimize, evaluate and standardize to provide the best possible quality of treatment.
NoviSight™ Demonstration: 3D Image Analysis and Statistical Software for Organoids and Spheroids

NoviSight™ Demonstration: 3D Image Analysis and Statistical Software for Organoids and Spheroids

Experts
Hiroya Ishihara
Applications Scientist
Olympus Technologies Asia, Olympus Corporation
Three-dimensional cell culture models such as patient-derived organoids (PDO) and spheroids have increased in popularity because they can provide a 3D microenvironment that more closely reproduces in vivo conditions compared to 2D monolayer culture. Phenotypic and functional heterogeneity arise among cancer cells within the same tumor because of genetic change, environmental differences and reversible changes in cell properties. Therefore, evaluation of cell-specific responses is important for accurate prediction of drug efficacy and kinetics in vivo.
Study the Function of Stromal Cells through Intestinal Organoid Co-Culture Technology

Study the Function of Stromal Cells through Intestinal Organoid Co-Culture Technology

Experts
Dr. Ningbo Wu
Associate Professor
Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine
For a long period of time, intestinal mesenchymal stromal cells have been considered as a relatively simple and homogeneous group of cells. With the help of single cell transcriptomics studies, it has now been clear that these cells are quite complex and heterogeneous. However, the detailed cellular and molecular mechanisms that regulate the function of these cells remains poorly understood. Therefore, the ability to perturb and evaluate the function of these stromal cells is critical to the understanding of intestinal stem cell niche and the etiology of the inflammatory bowel diseases and colitis associated colorectal cancer.
An In Vitro System for Evaluating Anticancer Drugs Using Patient-Derived Tumor Organoids

An In Vitro System for Evaluating Anticancer Drugs Using Patient-Derived Tumor Organoids

Experts
Dr. Motoki Takagi
Professor
Medical-Industrial Translational Research Center, Fukushima Medical University
Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established a novel series of patient-derived tumor organoids (PDOs) from various types of tumor tissues from the Fukushima Translational Research Project, which are designated as Fukushima (F)-PDOs. F-PDOs could be cultured for >6 months and formed cell clusters with similar morphologies to their source tumors. Comparative histological and comprehensive gene-expression analyses also demonstrated that the characteristics of PDOs were similar to those of their source tumors, even following long-term expansion in culture. In addition, suitable high-throughput assay systems were constructed for each F-PDO in 96- and 384-well plate formats.
3D Segmentation for Fluorescence Images: From Qualitative to Quantitative

3D Segmentation for Fluorescence Images: From Qualitative to Quantitative

Experts
Dr. Yu Weimiao
Head of Computational & Molecular Pathology Lab (CMPL) Agency of Science
Technology and Research
Cells are 3D functional elements in biology science and they are actively moving to perform their functions. Collective cell migration is appreciated as an important model for the understanding of the mechanism governing the cell movement in Vivo and in Vitro. It is a highly kinetic process involved in immune response, wound healing, tissue development and cancer metastasis. Recent decades have seen the fast development of various optical imaging techniques with excellent spatial-temporal resolution, dimensionality and scale. The generation of novel probes have also allowed us to acquire the movies of migrating cells with specific proteins/molecules. However, we lack of advanced solution to analyse such high-content and highly dynamic images/videos.
Prostate Cell Lineage Hierarchy and Plasticity

Prostate Cell Lineage Hierarchy and Plasticity

Experts
Dr. Dong Gao
Principal Investigator
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences
Prostate cancer is one of the most common cancers worldwide and also the second leading cause of cancer-related death in males in Western countries. Although the majority of human primary prostate cancers have a luminal phenotype, both basal cells and luminal cells can serve as cellular origins of prostate cancer in model systems. However, the stem cell-like plasticity of defined prostate epithelial cells and the cellular origin of prostate cancer under physiological conditions have not been identified. Recently, prostate basal and luminal cell populations were both shown to be self-sustaining, and both cell types could initiate prostate cancer. However, the oncogenic transformation of basal cells requires basal to luminal cell transition. In addition, luminal cells were shown to have greater tendency to be the cells of origin for prostate cancer in some contexts.
Investigating Spheroid Architecture Using the FV3000 Confocal Microscope

Investigating Spheroid Architecture Using the FV3000 Confocal Microscope

Experts
Ms. Gency Gunasingh
Research Assistant
The University of Queensland Diamantina Institute
Phenotypic tumour heterogeneity arising due to differentially cycling cell populations has been implicated in increased therapy resistance. This phenomenon cannot be assessed in adherent cell culture, where microenvironmental conditions are homogeneous. Thus, we utilise melanoma spheroids to model the 3D tumour microenvironment including the extracellular matrix (ECM) and study spheroid structure, necrotic region, individual cell arrangement within and gene expression patterns. We achieve this by exploiting the fluorescence ubiquitination cell cycle indicator (FUCCI) system to monitor cell cycle stages as a surrogate marker for phenotypic tumour heterogeneity, tissue clearing and confocal microscopy using FV3000.
Advances in 3D Optical Imaging Technologies: An Overview

Advances in 3D Optical Imaging Technologies: An Overview

Experts
Mr. Srivats Hariharan
Manager, Applications and Marketing
Olympus Singapore
With rapid development in fluorescent proteins, synthetic fluorochromes, and digital imaging, advanced 3D imaging technologies are now available to investigators to provide critical insights into the fundamental nature of cellular and tissue functions. 3D and 4D imaging systems have become very common tools among biologists. However, there are several technical challenges and limitations in performing successful 3D and 4D imaging. Olympus has developed a wide range of 3D imaging microscopes to overcome these challenges and to satisfy the requirements of researchers across different disciplines.
3D Microscopy: Understanding the Give and Take on Instrument Performance to Enable Informed Decisions

3D Microscopy: Understanding the Give and Take on Instrument Performance to Enable Informed Decisions

Experts
Dr. Graham Wright
Acting Director
Research Support Centre (RSC), A*STAR, Singapore
Biologists have a significant toolbox at their disposal when it comes to microscopically imaging 3D samples, such as organoids. From widefield microscopy to confocal, superresolution, multiphoton and lightsheet, each have their own set of pros and cons that must be carefully considered before making an informed choice on the most suitable to address your biological question. Often a correlative approach is required, applying several techniques to address the question from different perspectives. It is also crucial to consider the method of sample preparation and optimise each of the potential steps which can include fixation, permeabilisation, labelling and mounting. Further, the images generated by all techniques can be enhanced with post-processing techniques, such as deconvolution, which can enable or help to improve subsequent image analysis and interpretation.
Tissue Optical Clearing Imaging: From In Vitro to In Vivo

Tissue Optical Clearing Imaging: From In Vitro to In Vivo

Experts
Dr. Dan Zhu
Professor
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
Biomedical optical Imaging, as a powerful tool has been applied for observing biomedical tissue structural and functional information with high resolution and contrast unattainable by any other method. However, the high scattering of turbid biological tissues limits the penetration of light, leading to strongly decreased imaging resolution and contrast as light propagates deeper into the tissue. Fortunately, novel tissue optical clearing technique provide a way for reducing the scattering of tissue and improving the optical imaging quality. This presentation will introduce our progress from in vitro and in vivo of tissue optical clearing imaging, including developing in vitro optical clearing methods, such as FDISCO and MACS. Meanwhile, we will also demonstrate in vivo skull/skin optical clearing window for imaging structural and functional of cutaneous / cortical vascular and cells, also manipulating cortical vasculature.
Utilizing Tumoroids to Explore Anti-Tumor Immunity in Rectal Cancer

Utilizing Tumoroids to Explore Anti-Tumor Immunity in Rectal Cancer

Experts
Dr. Kasmira Wilson
Researcher
Peter MacCallum Cancer Foundation
Globally colorectal cancer is a significant public health burden. It is the third most commonly diagnosed cancer and fourth leading cause of cancer related deaths in the world. A subset of patients diagnosed with rectal cancer require neoadjuvant chemoradiotherapy (NACRT) prior to surgery. However, there is a spectrum of response to this therapy with only 10-20% of patients achieving a complete pathological response. In addition, 20-40% of patients will demonstrate no response to this treatment. There is currently no method that predicts how a patient will respond to NACRT accurately. In order to investigate the mechanisms underpinning how patients respond to therapy, patient derived tumouroids have been utilised. These personalised in vitro three-dimensional tumour models recapitulate the in vivo tumour of origin genotypically. The Ramsay laboratory (Peter MacCallum, Melbourne) has successfully co-cultured patient-matched rectal cancer tumouroids with tumour infiltrating lymphocytes (TILS) in a novel in vitro assay, preliminary data generated suggests this assay has the ability to predict the response of a patient to treatment with NACRT prior to instigation of neo-adjuvant therapy. This assay provides a pre-clinical platform that encapsulates the hosts immune response toward their tumour. However, manual analysis of the data generated from this assay is time consuming and limits the clinical utility of this platform. Machine-based learning to develop artificial neural networks capable of analysing data produced from the killing assay has been developed to automate analysis. Automated analysis utilising artificial neural networks is a feasible approach to expedite the processing of data generated from the cytotoxic killing assays and will improve the clinical utility of this platform to direct personalised patient therapy.
Converting from 2D to 3D: Bio-Techne Solutions for Your 3D Culture

Converting from 2D to 3D: Bio-Techne Solutions for Your 3D Culture

Experts
Dr. Xiaotong Cui
Field Application Specialist
Bio-Techne
Organoid and three-dimensional (3D) cell culture are emerging as pivotal systems for understanding human organ development, modeling disease, screening for drug efficacy or toxicity, and investigating personalized medicine. Usually they are derived from primary tissue, embryonic stem cells (ESCs), or induced pluripotent stem cells (iPSCs), which are capable of self-renewal and differentiation.

Culture and Quantitative 3D Imaging of Organoids: Challenges and Solutions

Experts
Dr. Anne Beghin
Assistant Professor, Research Mechanobiology Institute
National University of Singapore
Turning organoids into impactful translational models includes being able to culture them and assess those that develop robustly with physiologically relevant architecture. However, quantitative comparisons and statistical analysis at high content, which are mandatory to describe the complexity of such multicellular 3D objects are not possible owing to the lack of high-throughput 3D imaging methods. We have thus engineered a versatile High Content Screening (HCS) device to streamline all the steps of organoid culture to exploit its potential in morphogenesis understanding. Our approach comprises a new generation of versatile scaffolding cell culture multiwell chips with embedded optical components (= lighting JeWells) that enables rapid 3D imaging.

A Smarter Approach to Culturing and Nurturing Your Cells

Experts
Shogo Usui
Product Leader
In this webinar, expert Shogo Usui will discuss the current challenges in cell culture techniques and explore how the CM20 system can accelerate your research with an improved cell culture process.

Modern Slide Scanning: Single-cell Phenotyping on Fixed Samples (Encore Edition)

Experts
Flavio Giacobone
제품 마케팅 관리자
Alec De Grand
제품 관리자
Angela Vasaturo
Senior Field Application Scientist, Ultivue, Inc.
Get another chance to learn about the latest generation of slide scanners on November 18, when we replay our webinar with our Olympus experts Flavio and Alec. In this webinar, our experts will discuss how modern slide scanners can be a workhorse for your applications and how multiplexing can reveal much more information from a slide. With a guest expert from Ultivue, you’ll learn how single-cell phenotyping can dramatically improve the understanding of the dynamics in a sample, even if it is a fixed slide.

To the Diffraction Limit and Beyond: The Nanoscale Organization of Axo-Axonic Synapses | 2 p.m.

Experts
Benjamin Compans, Ph.D.
Marie Curie Research Fellow
Here we use super-resolution microscopy to decipher the precise molecular organization of axo-axonic synapses and its modifications during activity-dependent forms of plasticity.

To the Diffraction Limit and Beyond: The Nanoscale Organization of Axo-Axonic Synapses | 10 a.m.

Experts
Benjamin Compans, Ph.D.
Marie Curie Research Fellow
Here we use super-resolution microscopy to decipher the precise molecular organization of axo-axonic synapses and its modifications during activity-dependent forms of plasticity.

Light Sheet Microscopy – New multi-resolution and -color imaging methods

Experts
Irina Rakotoson
생명과학 제품 관리자
Join Irina to discover an easy and effective method to obtain perfect multi-color, multi-resolution imaging in Light Sheet Microscopy (LSM) for 3D fluorescence imaging. In this webinar you’ll learn about the challenges of multi-color channel acquisition in LSM and how to correct chromatic shifts for clean and crisp images.
Olympus Organoid Conference: Think Deep, See Deeper | 3-Day Virtual Event | September 7-9, 2021

Olympus Organoid Conference: Think Deep, See Deeper | 3-Day Virtual Event | September 7-9, 2021

From 7 – 9 September, learn from Olympus microscope users and technology partners on how they can support your scientific research. Cell Biologists, Microscopists and Image analysis experts will share their experiences and answer your questions.

Create a Smarter Cell Culture Workflow

Experts
Joanna Hawryluk
Product Manager
In this webinar, expert Joanna Hawryluk explores how the OLYMPUS Provi™ CM20 incubation monitoring system can help improve the health and stability of cell cultures through machine learning. With the aid of AI, the CM20 monitor automatically measures cell conditions using constant analysis parameters to provide quantitative data—all while your cultures remain safely in the incubator.

Digital Image Processing: Point and Local Operation Filters (Encore Edition)

Experts
Heiko Gäthje
수석 트레이너, 교육 아카데미
Olympus Europa
Want to get a better understanding of digital image processing techniques? Then watch our Ask the Experts webinar rerun on July 29, where we discuss how point and local operation filters can be used to control sources of error such as noise or low contrast in microscopy images. As well as exploring the mathematics behind image processing techniques such as segmentation, extraction and thresholding, our expert Heiko will also discuss the ethics of image processing – helping you judge whether specific techniques are allowed.
Depth Matters: Transforming Biology for More Realistic and Meaningful Pursuits

Depth Matters: Transforming Biology for More Realistic and Meaningful Pursuits

Experts
Dr. Gowri Balachander
Research Fellow, Translation Mechanobiology lab, National University of Singapore
Improvements to in vitro three-dimensional (3D) models are making them increasingly better at mimicking in vivo-like cellular behavior. Every tissue presents a distinct microenvironment with a unique blend of biochemical and biophysical components that dictate cellular behavior. Recreation of critical features of tissues that nurtures recapitulation of in vivo-like cellular behavior is the essence of an effective 3D model. In this webinar, through specific examples of 3D models for tissue development and cancer, we will revisit the fundamental principles of designing 3D models that can effectively recapitulate critical features of the tissues in vitro and applications of such models in mechanistic studies and drug testing. Our work also highlights the importance of 3D imaging systems, such as laser scanning confocal microscopes, which are necessary for such work.

Microscope Objectives—Where the Magic Happens (Encore Edition)

Experts
Klaus Willeke
Product Marketing Manager
Lauren Alvarenga
제품 관리자, 생명과학 현미경
Get another chance to learn about cutting-edge microscope technology on July 8th, when we replay our webinar with Olympus microscope experts Lauren and Klaus. In this webinar, the experts will discuss how objectives affect image quality and highlight why good optics are so important in complex microscope systems. The webinar also covers how progress in lens manufacturing technology is transforming the capability of advanced microscopy systems, and explores how versatile new lenses are enhancing applications including whole slide imaging, super resolution systems, and laser scanning microscopy.
Olympus Discovery Summit—Looking Forward: A New Era of Research

Olympus Discovery Summit—Looking Forward: A New Era of Research

The Olympus Discovery Summit, held in April, featured microscopists and imaging experts sharing about advances in technology and research. Experience or relive this free three-day virtual event by watching the webinars on demand. Hear from your peers and learn about topics, including best practices for a post-pandemic workplace, emerging technologies, next-generation models for research, and more!
ICSI—Past, Present & Future

ICSI—Past, Present & Future

Experts
Dr. Hrishikesh Pai
Medical Director, Bloom IVF Group
In this webinar, Dr. Pai will be sharing on what’s new in the management of male infertility with special focus on Intra Cytoplasmic Sperm Injection (ICSI). He will be describing the latest diagnostic modalities in male infertility especially sperm DNA fragmentation, genetic testing, cryotozoospermia and microsurgical TESA in cases of non-instructive azoospermia.

Microscope Objectives—Where the Magic Happens

Experts
Ganesh Kadasoor
Olympus Medical Systems India Ltd의 응용 전문가
Wei Juan Wong
Olympus 싱가포르의 제품 수석 전문가
Olympus Soft Imaging Solutions
In this webinar, Olympus microscope experts Ganesh and Wei Juan discuss the importance of good optics in a complex microscope system and what optical features are important for high final image quality.
Think Deep, See Deeper with Near-Infrared Laser Scanning Confocal Microscope

Think Deep, See Deeper with Near-Infrared Laser Scanning Confocal Microscope

Experts
Chunsong Yan
사업 개발 관리자, 생명과학
Olympus Australia & New Zealand
Srivats Hariharan
관리자, Olympus 싱가포르의 제품 및 응용
If you’re interested in having more fluorescent markers in your sample, imaging deeper into your sample at high resolution, and conducting live cell imaging with minimal phototoxicity, check out this on-demand webinar from Olympus imaging experts.
Digital Image Processing: Point and Local Operation Filters

Digital Image Processing: Point and Local Operation Filters

Experts
Heiko Gäthje
수석 트레이너, 교육 아카데미
Olympus Europa
Takeo Ogama
제품 및 전략 수석 기획자 겸 제품 관리자
Images captured with a light microscope are never true representations of the specimen; there are always sources of error that must be controlled. In this webinar, we will discuss how these sources of error can be managed.
Light Sheet Microscopy for Deeper Insight into Life

Light Sheet Microscopy for Deeper Insight into Life

Experts
Irina Rakotoson
생명과학 제품 관리자
In this webinar, you’ll learn how the Alpha3 light sheet microscope combines very thin optical sectioning and high-quality Olympus optics for high-resolution 3D imaging of both live and fixed biological samples.
Multiplexing and Deep Tissue Imaging with Near-Infrared Confocal Laser Scanning Microscopy

Multiplexing and Deep Tissue Imaging with Near-Infrared Confocal Laser Scanning Microscopy

Experts
Bülent Peker
제품 마케팅 수석 관리자
Evident
Rebecca Bonfig
제품 관리자, 공초점 현미경
In this webinar, you’ll learn about fluorescence multiplexing and deep tissue imaging using near-infrared (NIR) laser light.
InSight Blog Sign-up

By clicking subscribe you are agreeing to our privacy policy which can be found here.

Sorry, this page is not
available in your country.

죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.